Crimson Publishers Publish With Us Reprints e-Books Video articles


Research & Development in Material Science

Enriched Mechanical Properties of Epoxy/Coir Fiber Composites with Graphene Oxide

Submission: May 10, 2019;Published: May 15, 2019

DOI: 10.31031/RDMS.2019.10.000749

ISSN : 2576-8840
Volume10 Issue5


Synthesis of Graphene oxide (GO) was done by Improved hummer’s method and confirmed by Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray Diffractometry and Raman Spectroscopy. The dispersion of GO was obtained using cetyl trimethyl ammonium bromide (CTAB), a cationic surfactant, in the epoxy matrix. The enrichment in the mechanical properties was observed by loading of GO (1.0 wt.%, 2.5 wt.% and 5.0 wt. %) in the epoxy/coir fiber (ECF) composites. The ECF composites were prepared using hand layup technique, with constant fiber ratio of 5.0 wt. % and fiber length in the range of 5-7mm. The highest tensile strength of 13 MPa was obtained for 5.0 wt. % GO-reinforced ECF as compared to 4 MPa for neat epoxy and 6 MPa for ECF. Flexural strength of 64 MPa was obtained for 5.0 wt. % GO reinforced ECF as compared to 23 MPa for neat epoxy and 32 MPa for ECF. The impact strength increased from 31J/m to 44J/m and 135J/m for neat epoxy, ECF, and 5.0 wt. % GO reinforced ECF respectively. It was noticed that the CTAB treatment resulted in proper interaction of GO with epoxy resin and coir fibers, which improved mechanical properties of ECF.

Keywords: Coir fiber; Graphene oxide; Epoxy; Mechanical

Get access to the full text of this article