Crimson Publishers Publish With Us Reprints e-Books Video articles

Abstract

Open Access Biostatistics & Bioinformatics

Breast Cancer Prediction Using Bayesian Logistic Regression

Submission: July 26, 2018; Published: September 25, 2018

DOI: 10.31031/OABB.2018.02.000537

ISSN 2578-0247
Volume2 Issue3

Abstract

Prediction of breast cancer based upon several features computed for each subject is a binary classification problem. Several discriminant methods exist for this problem, some of the commonly used methods are: Decision Trees, Random Forest, Neural Network, Support Vector Machine (SVM), and Logistic Regression (LR). Except for Logistic Regression, the other listed methods are predictive in nature; LR yields an explanatory model that can also be used for prediction, and for this reason it is commonly used in many disciplines including clinical research. In this article, we demonstrate the method of Bayesian LR to predict breast cancer using the Wisconsin Diagnosis Breast Cancer (WDBC) data set available at the UCI Machine Learning Repository.

Get access to the full text of this article


About Crimson

We at Crimson Publishing are a group of people with a combined passion for science and research, who wants to bring to the world a unified platform where all scientific know-how is available read more...

Leave a comment

Contact Info

  • Crimson Publishers, LLC
  • 555 Madison Avenue, 5th floor
  •     New York, NY 10022, USA
  • +1 (929) 600-8049
  • +1 (929) 447-1137
  • info@crimsonpublishers.com
  • www.crimsonpublishers.com