Tej Nath Lamichhane1*, Kaustubh Mungale2,3,4, Haobo Wang1,5, Kinjal Gandha6, Xubo Liu6, Ikenna C Nlebedim6, Zhang Gai7, Uday Kumar Vaidya2,3,4 and M Parans Paranthaman1**
1Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
2Tickle College of Engineering, The University of Tennessee, Middle Drive, Knoxville, TN 37996, USA
3Manufacturing Sciences Division, Oak Ridge National Laboratory, 2350 Cherahala Blvd, Knoxville, TN 37932, USA
4Institute for Advanced Composites Manufacturing Innovation, 2360 Cherahala Blvd, Knoxville, TN 37932, USA
5The Bredesen Center, The University of Tennessee, Knoxville, TN 37996, USA
6Critical Materials Institute, Ames Laboratory, Ames, IA 50011, USA
7Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
*Corresponding author: Tej Nath Lamichhane and M Parans Paranthaman, Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA Emails: lamichhanetn@ornl.gov paranthamanm@ornl.gov
Submission: November 08, 2021;Published: November 22, 2021
ISSN: 2576-8840 Volume 16 Issue 2
Bonded permanent magnets need to process magnetic filler particles and binder together which is a form of hybrid or composite manufacturing that needs to simultaneously process multimaterials. Polymer bonding of the permanent magnets decreases the energy product of the bonded magnets which varies with square of loading fraction of magnetic materials. However, due to high viscosity of bonding polymer prohibits loading higher than 80 volume % of magnetic materials in most efficient loading process such as compression molding. To further increase the loading of magnetic fraction in the bonded permanent magnets, it is expected to be beneficial to introduce a fraction of nonreacting thermally sacrificial polymer along with permanent bonding polymer in the least permissible of about 20 volume % of the polymer. This process of first adding the sacrificial polymer for higher processability for composites and later removing it via post processing such as heat treatment provides a simple example of inclusion of both the additive and the subtractive stages of hybrid manufacturing. These hybrid composite magnets can be heat treated to remove the sacrificial polymer to further increase the density and energy product which might require to implement hot isostatic pressing for compaction. Although the identification of such ideal polymer requires an extensive polymer chemistry research, we have compression molded several permanent bonding polymers such as nylon, polycarbonate (PC) and polyphenyl sulfide (PPS) and potential sacrificial polymer such as polyoxymethylene (POM), polystyrene (PS), and Acrylonitrile Butadiene Styrene (ABS) and heat treated to remove the sacrificial polymers. It is discovered that oxygen free low temperature pyrolizable polymers could be the potential candidates for increasing the magnet particles loading for achieving high energy products.
Hybrid manufacturing process encompasses combination of multiple processing techniques as well as simultaneous processing of multimaterials to improve the overall quality of the process and products [1]. Permanent magnets energy product boosting is a critical manufacturing challenge both in sintered magnets and bonded magnets. Most powerful grade of magnets are traditionally sintered magnets which require several
conventional processing steps such as powder metallurgy [2], strip
casting [3], and complex thermal treatment cycles. These complex
manufacturing steps makes the permanent magnets coprocessing
with other electrical machines components such as magnet holder
rotor core very complicated if not impossible. Broadly speaking,
the electrical machines in this article refers to motors, generators,
power electronics and additional devices that incorporates soft
magnets, permanent magnets, electrical conductors, cooling
channels and sensors. In bonded magnets, there are several wellestablished
techniques such as compression molding, injection
molding, calendaring and extrusion [4] which can be categorized
as hybrid or semihybrid manufacturing technique since the
magnetic filers need to be blended with binders and coprocessed
to manufacture the magnets. The extrusion based bonded magnets
manufacturing technique is emerging as additive manufacturing
also known as 3D printing technique such as fused deposition
modeling where the magnets composites can be printed in complex
shapes [5,6]. Bonded magnets are very important to reduce the
weight of an electrical machine, eddy current loss, increase the
flexural strength and complex shapes and sizes moldability [7].
There are very few hybrid magnets manufactured literature
reports mainly in form of 3D printing of two types of powders and
binders. Yang et al. 3D printed the mixture of anisotropic NdFeB
and SrFe12O19 powder using epoxy extrusion technique and magnet
density of 3.78-3.64g/cc depending upon content of mixed ferrite
powder [8]. Similarly, Gandha et al. Used the fused deposition
modeling based big area additive manufacturing of anisotropic
NdFeB and Sm-Fe-N powder in nylon binder and heat treated in
external magnetic field to generate up to 11 MGOe energy product
[9]. There are not many initiatives of removal of some nonmagnetic
fragments of binder from post processing such as heat treatment
or chemical removal of a component and consolidation at the end
of hot isostatic pressing is not pursued as an avenue to enhance
the energy product of the fabricated magnets. Rather the energy
product of the bonded magnets is greatly reduced due to inclusion
of nonmagnetic binders where energy product varies as the square
of the filling fraction [10]. In the current most efficient filling
method, compression molding can process up to 80 volume % [11]
of magnetic filer in the commercial binders, in general permanent,
such as nylon, polyphenylene sulfide (PPS) and polycarbonates
(PC). In this article the permanent polymers refers to commercial,
high temperature melting magnetic binders such as nylon, PPS
and PC. An 80 volume % magnetic fillers packing cannot provide
more than 64% of the energy product of the starting magnetic
powder which could be up to 25 MGOe for the 40 MGOe anisotropic
precursor powders. However, to further increase the energy
product of the bonded magnets, there is need to develop a new
method of increasing the volume fraction of the magnetic fillers
which is already optimized for most of the commercial magnetic
binders.
Hybrid manufacturing with integrated multimaterials
processing of additive manufacturing technologies and subtractive
modes of parts accessing, surface treatments, tolerance maintenance
and postprocessing capabilities would be the next steps towards
the production of the next generation of electrical machines [12].
Such hybrid production units would be very essential for the onsite
production and installation of large high performance electrical
machines such as wind turbines. Since the high-performance
electrical machines needs high energy product sintered magnets, it
is essential to increase the energy product of the bonded magnets
to make them more applicable. Large electrical machines and their
components are inherently complicated to manufacture due to their
component’s wise complex materials composition as well as gigantic
structures. Bonded magnets can help in significant weight reduction
in gigantic electrical machines without much compromise in
performance since they could significantly reduce the eddy current
loss [7,13]. Hybrid manufacturing of electrical machines is essential
for the next generation of electrical machines which includes onsite
manufacturing, installation and boosting the overall performance
[12]. Recently General Electric and Company has announced the
additive manufacturing of nacelle and additional large metallic
components of wind turbines which also includes sand/ceramics
ink jetting for the mold’s fabrication [14]. This trend indicates that
the future large electrical machines manufacturing techniques will
evolve toward hybrid manufacturing method to increase the ease
of design and productivity which must come up with fundamental
challenges of simultaneous processing of materials for several
components [15]. One of the biggest challenges of a single-attemptbuilt
electrical machines would be simultaneous processing of
soft magnetic materials for electrical cores, permanent magnets,
winding electrical conductors and insulating materials due to their
very dissimilar materials processing techniques and thermal cycles.
Being the key component of electrical machines, investigation
about the possibility of coprocessing of permanent magnets in
hybrid manufacturing of electrical machines is essential. Due to
very high temperature thermal processing cycles of soft magnets
and electric conductors in comparison to permanent magnets, a
low temperature thermal processing at the final stage of the hybrid
manufacturing process is essential for permanent magnets. An
intuitive approach could be to come up with stepwise processing
of multimaterials components for the electrical machines such as
casting of soft laminates separated by thin, soft magnetic insulator
laminates [12], casting/printing of unconventional conducting
cables [16-18], cooling channels followed by permanent magnets
to achieve the single built electrical machine [19]. Among these
steps, permanent magnets are the most expensive part of the
electrical machines and cannot be easily casted in complex shapes and large sizes and properly magnetized in the desired direction.
This is due to the requirement of complex thermal cycles for the
magnets microstructure refinement to achieve their monomagnetic
domain sizes, their alignment and magnetization to achieve the
permanency specially in fully sintered magnets. In such a scenario,
bonded permanent magnets still could be processed via either
inkjetting of soft magnetic grain boundary phase laden ink to bond
the preoptimized monodomain anisotropic magnetic particles or
extruding the magnet polymer composite in the designated slots
for the permanent magnets. However, low eddy current loss is a
very important factor for achieving higher efficiency in electrical
machines and requires thin laminates of soft magnetic materials.
Similarly in bonded permanent magnets, the eddy current could
be greatly reduced since the polymer binding greatly increases the
electrical resistance and loss fraction of magnetization [7]. One of
the options could be to compress molding large permanent magnets
sections in a soft steel enclosure, heat treat and enhance the energy
product via partial removal of nonmagnetic mostly sacrificial
binder and high temperature isostatic pressing, and hermetically
seal and magnetize them before they are installed in the ceramics
casted slots of electrical rotors.
To exceed the current loading fraction of magnetic particles
and reap the benefits of lower eddy current in bonded magnets,
we investigated the opportunities and challenges of hybrid
manufacturing of bonded magnets with permanent and sacrificial
binder polymers [20] with maximum particles loading (e.g.,
80 volume % of NdFeB) using compression molding and post
processing. The key task was to fabricate the bonded NdFeB
magnets with two types of binder and heat treat to remove the
low temperature melting “hereby sacrificial polymer” to increase
the overall density of the bonded magnets. To successfully execute
this idea, the biggest challenge starts from identification of possible
sacrificial binder that does not react with permanent binder
polymer while heat treating and does not degrade the magnet
properties during low temperature pyrolysis. We selected the
easily available low melting polymers both oxygenated and oxygen
free polymers as sacrificial binders, compressed molded with
permanent binders such as nylon, PPS and PC and postprocessed
via heat treatment under Ar atmosphere. The preliminary study
revealed that oxygen free low temperature pyrolyzable polymers
that do not react with permanent binders and do not degrade the
magnetic particles would be the ideal candidates to be discovered
in future. An alternative route for the sacrificial binder removal
could be chemical removal [21], which could be further accelerated
via selective catalytic decomposition [22] of sacrificial polymer are
the area to be investigated in future.
As permanent binders, relatively higher melting temperature with well-established processing techniques such as nylons, PPS, and PC were selected. As potential sacrificial polymers low melting temperature polymers (polyoxymethylene (POM), polystyrene (PS) and acrylonitrile butadiene styrene (ABS) were selected (chemical formula and melting temperatures are reported in Table 1). Anisotropic Magnequench magnet powders were used for the compression molding. The process of the compression molding of the composite is reported elsewhere [10]. Heat treatment of the composites to remove the sacrificial polymers were carried out under the Ar flow environment both with and without magnetic field up to 10 hours. The magnetic properties of the samples were measured using Quantum Design Dynacool magnetometer with a magnetic field of up to μoH = 9T.
Table 1: Description of trailed polymers. Top three are permanent and lower three are considered sacrificial.
In case of sacrificial polymer with oxygen, the magnetic coercivities of the heat-treated samples were almost completely lost. As a representative result, PC bonded magnet compounded with POM showed significant loss of coercivity after heat treatment at 600 ºC to remove all the weight of sacrificial polymer POM compared with as-compounded sample (Figure 1). Additionally, the mechanical properties of the sample were degraded significantly. This outcome suggests that the sacrificial polymer removal should be executed in relatively low temperature. Another parameter is the time of heat treatment so that coercivity of the magnet is also not degraded in addition to mechanical properties. Ultimately, to achieve the dense magnet, hot isostatic pressing will be essential to increase the overall density of the magnet [23].
Figure 1: Room temperature magnetization of as compressed molded and 600 ℃ 2h heat treated NdFeB, polycarbonate and polyoxymethylene bonded magnets until the weight loss percentage corresponding of sacrificial polymer.
Figure 2 shows the magnetic properties of the NdFeB, nylon and ABS compression molded magnets. Figure 2(a) shows the room temperature magnetization of as printed and heat-treated samples in Ar atmosphere for 10h which shows a significant (11.5 %) decrease in coercivity. Figure 2(b) shows the room temperature magnetization for the same batch heat treated in presence of the 1T magnetic field at 300 ºC for 2h, 5h and 10h dwell times. Corresponding coercivity, % mass loss of the samples and saturation magnetization are shown in Table 2. In comparison to coercivity, the saturation magnetization loss is negligible. As expected, preserving the coercivity is a crucial challenge in hybrid magnet manufacturing as it is for generating in sintering techniques. The most important outcome of the Nylon/ABS composite is that although nylon has oxygen in it, it does not degrade the magnets. There is almost comparable coercivity in the as printed sample for the sample which was heat treated under Ar flow for about 5h as shown in Figure 2(b). The coercivity is slightly decreased in 10h heat treatment time.
Table 2: Measurement of coercivities, % mass loss and saturation magnetization in the heat-treated ABS+Nylon NdFeB magnet composite.
Figure 2: Comparison of room temperature magnetization of as compressed molded and heat treated NdFeB+ ABS + Nylon composite (a) without applied field (b) with applied field.
Figure 3 shows the comparison of magnetic hysteresis loops of as compounded and heat treated NdFeB/PPS/ABS composite samples without applied magnetic field in Figure 3(a) and with applied magnetic field in Figure 3(b). The coercivities, mass loss % and saturation magnetizations are presented in Table 3. The coercivity of the heat treated NdFeB PPS/ABS composite samples are drastically decreasing despite no oxygen both in PPS and ABS.
From the experimental evidence of compression molding of NdFeB, low melting temperature and oxygen-free sacrificial polymers like ABS is a promising candidate. In case of oxygenated and oxygen free permanent polymer, it is not clear whether oxygen from those permanent polymers is detrimental below melting temperature of permanent polymer or not. In fact, the role of oxygen constituent in polymer binders for bonded magnets was not previously reported. As the hybrid manufacturing is getting unprecedented attention and permanent magnet is the key component of the electrical machines, it is crucial to find a proper way of coprocessing of permanent magnets designing as well as enhancing the energy produce after initial manufacturing. In this regards, low temperature processing techniques such as compressing molding, fused deposition modeling, binder jetting etc. can be combined to already casted/printed soft magnetic rotor slots without altering the mechanical and magnetic properties of the soft magnetic materials. As the post processing of ABS/Nylon shows very encouraging result although we just tested few pairs of polymers. As this research will progress, it needs to identify appropriate pair of polymers to remove a sacrificial polymer without sacrificing the magnetic properties. The future area to focus could be identifying low temperature, low heat treatment time and easy hot isostatic pressing technique to increase the density of the permanent magnets.
Table 3: Measurement of coercivities, % mass loss and saturation magnetization in the heat-treated ABS/PPS NdFeB magnet composite.
Figure 3: Comparison of room temperature magnetization of as compressed molded and heat treated NdFeB+PPS+ABS composite (a) without field (b) with applied field.
The preliminary concept of hybrid manufacturing of NdFeB bonded magnets various permanent commercial binders such as PC, nylon, and PPS mixed with various low melting polymers with and without constituent oxygen. The Nylon /ABS binder pairs preserve the magnetic properties almost intact among the tested pairs up to 10h heat-treatment under inert atmosphere although much high temperature heat treatment is essential to completely remove the sacrificial components. These preliminary results highlight the area to focus on identifying low temperature, oxygen free pyrolyzable sacrificial polymer along with easily processable permanent binder such as nylon.
This research was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).
© 2021 Tej Nath Lamichhane. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and build upon your work non-commercially.