Sanjita Das* and Anupam Dubey
Noida Institute of Engineering and Technology (Pharmacy Institute), India
*Corresponding author: Sanjita Das, Noida Institute of Engineering and Technology (Pharmacy Institute), India
Submission: July 08, 2021;Published: July 23, 2021
ISSN: 2640-9666Volume4 Issue4
Spinal Muscular Atrophy (SMA) is a genetic disease. Caused by deletion or mutation of SMN1, it is an autosomal recessive motor neuron disease. This disease is characterized by generalized muscle weakness and atrophy predominating in proximal limb muscles. Based on age of onset, it’s phenotype is classified into four grades of severity (SMA I, SMAII, SMAIII, SMA IV). This disease is caused by homozygous mutations of the motor neuron 1 (SMN1) gene, and the diagnostic test demonstrates in most patients the homozygous deletion of the SMN1 gene. Individuals at risk should be tested first and, in case of testing positive, the partner should be then analysed. The management of SMA should properly be followed-up coordination by an expert who is able to plan a multidisciplinary intervention that includes pulmonary, gastroenterology/nutrition, and orthopedic care is recommended. An effort has been made to focus on the diagnosis procedures followed by different effective management alternatives for SMA in the present review.
Keywords: Spinal Muscular Atrophy (SMA); Zolgensma; Genetic disorder; Gene therapy
Abbreviations: FDA: Food and Drug Administration; SMA: Spinal Muscular Atrophy; SMN: Survival Motor Neuron
Characterized by degeneration of alpha motor neurons in the spinal cord, resulting in
progressive proximal muscle weakness and paralysis, Spinal Muscular Atrophy (SMA) is an
autosomal recessive neuromuscular disease. There is 4 subtypes of SMA exist which is identify
on the basis of clinical severities [1-5]. With an incidence estimated to be around 1 : 6,000 to
1 : 10,000 in newborns, SMA is one of the most frequent monogenic neurodegenerative diseases
[6-8]. It affects approximately 1 in 10,000 individuals and is the most common inherited
cause of childhood mortality, but this may soon change given recent developments [9]. The
U.S. Food and Drug Administration (FDA) approved Spinraza (nusinersen) for the treatment
of SMA on Dec. 23, 2016. The FDA approved Zolgensma the first gene-replacement therapy for
a neuromuscular disease in May 2019. With SMA with bi-allaetic mutations in the SMN1 gene,
Zolgensma is a one-time intravenous (into the vein) infusion for the treatment of pediatric
patients younger than 2 years of age with SMA including those who are presymptomatic at
diagnosis [10].
Zolgensma is the most effective and most expensive drug. Rs. 18 crores is the cost of per
dose. With resultant disuse and atrophy of voluntary muscles, Spinal Muscular Atrophy (SMA)
is an inherited neuromuscular disorder resulting in anterior horn cell degeneration [5]. SMA
is caused by a mutation in the Survival Motor Neuron (SMN1) gene. For proper function of
the motor neurons The SMN1 gene produces the SMN protein. The signals from the brain
and spinal cord to the muscles telling the muscles to move is send by the Motor neurons.
When motor neurons die and fail to send signals, the muscles waste away, or atrophy. Muscle
atrophy in SMA can lead to an inability to perform respiratory and motor functions properly
[11,12].
The patient shows different symptoms like
1. Areflexia, particularly in extremities
2. Overall muscle weakness, poor muscle tone, limpness or a
tendency to flop
3. Difficulty achieving developmental milestones, difficulty
sitting/standing/walking
4. In small children: adopting of a frog-leg position when
sitting (hips abducted and knees flexed)
5. Loss of strength of the respiratory muscles: weak cough,
weak cry (infants), accumulation of secretions in the lungs or
throat, respiratory distress
6. Bell-shaped torso (caused by using only abdominal
muscles for respiration) in severe SMA type
7. Fasciculations (twitching) of the tongue
8. Difficulty sucking or swallowing, poor feeding [10-14]
Classification
SMA can be classified into different categories depending on its onset and symptoms. The classification is as follows (Table 1 & Figure 1); [15-18]
Table 1: Classification of SMA on the basis of eponym and age of onset [16-19].
Figure 1: Clinical classification of SMA subtypes according to onset, milestones achieved, and clinical presentation. Typically associated SMN2 copy numbers are displayed [20].
SMA 1: SMA type 1, or Werdnig-Hoffmann disease, is a serious
condition that usually appears before the age of 6 months. A child
may be born with breathing problems, which can be fatal within a
year without treatment [15-18].
SMA 2: Symptoms of SMA type 2 usually appear at the age of
6-18 months. The infant may learn to sit, but they will never be able
to stand or walk. In some cases, without treatment, the individual
may lose their ability to sit [15-18].
SMA 3: SMA type 3, or Kugelberg-Welander disease, appears
after the age of 18 months. The individual may have contractures, a
shortening of the muscles or tendons, which can prevent the joints
from moving freely [15-18].
SMA 4: It begins after the age of 21 years. The person will
have mild to moderate proximal weakness, which means that the
condition affects the muscles closest to the centre of the body [15-
18].
Etiology of SMA
People with SMA are either missing part of the SMN1 gene or have a changed (mutated) gene. SMN protein is produced by a healthy SMN1 gene. To survive and function properly motor genes need this protein. People with SMA don’t make enough SMN protein, and so the motor neurons shrink and die. As a result, voluntary movements can not be controlled by the brain, especially motion in the head, neck, arms and legs. On chromosome two almost identical SMN genes are present 5q13: the telomeric or SMN1 gene, which is the spinal muscular atrophy- determining gene, and the centromeric or SMN2 gene. By a single nucleotide the coding sequence of SMN2 differs from that of SMN1 (840C>T), which does not alter the aminoacidic sequence but results in alternative splicing of exon 7., SMN2 genes produce a reduced number of full-length transcripts (SMN-fl) and protein due to the alternative splicing of exon 7 , and a variable amount of mRNA lacking exon 7 (10% to 50%, SMN-del7) which give raise to a truncated and unstable protein [19-21]. Due to deletion or gene conversion of SMN1 to SMN2 about 95% of the patients have homozygous disruption of SMN1 [22]. About 3% of affected individuals are compound heterozygotes for deletion of one SMN1 allele and subtle intragenic mutations. All patients, however, retain at least one copy of SMN2, generally 2-While the severity of the loss of SMN1 is essential to the pathogenesis of SMA loss of SMN1 is essential to the pathogenesis of SMA. While type 3 and 4 generally have three or four, most SMA type I patients have two copies of SMN2, three SMN2 copies are common in SMA type II [23,24].
Diagnosis of SMA
For the diagnosis of SMA particularly in the severe variant of a
floppy baby or weak child clinical features are highly suggestive..
The intellect and attentiveness are always good. The weakness is
usually symmetrical and more proximal than distal; generally, it is
less in the arms than in the legs. By following methods the diagnosis
of SMA is mostly undertaken [25,26].
Blood test: The diagnosis of Spinal Muscular Atrophy is
performed by a genetic blood test.
EMG test: The electrical activity of a muscle or a group of
muscles is measured by Electromyography test.
Creatin kinase test: This test measures the high levels of
Creatin Kinase. This enzyme is released into the bloodstream by
deteriorating muscle.
Biopsy: Doctor removes small amount of muscle tissue and
send to it laboratory for examination in this test [26].
Treatment for SMA
Due to the resulting phenotypic spectrum of SMA it is generally
considered as a systemic disease [27]. The patients with SMA
requires the symptomatic management of respiratory, nutritional
and gastroenterological, orthopedic, and psychosocial issues [28].
Nonetheless, the implementation of standards of care is highly
variable and is influenced by cultural perspectives, socioeconomic
factors, and the availability of regional resources [29]. An updated
version of recommendations on diagnosing SMA and patient care
was published only recently due to advanced and improvements
in care over the last decade [30,31]. The FDA has approved three
medications to treat SMA: Nusinersen (Spinraza), onasemnogene
abeparvovec-xioi (Zolgensma) and risdiplam (Evrysdi) [32].
Antisense oligonucleotides Trusted Source (ASOs) are the drugs
where spinarza belongs which aim to target the underlying problem
by influencing the production of RNA. Genentech developed a
drug who is also a member of the Roche group, Evrysdi is another
effective agent for SMA which was developed in partnership with
SMA Foundation and PTC Therapeutics [32].
A one-time AAV-9-based gene transfer therapy which introduces
a full copy of the SMN1 gene is Onasemnogene abeparvovec. For the
treatment of Spinal Muscular Atrophy (SMA) in paediatric patients,
it is the most expensive medicine in the world. It was observed
after approval and reported an unprecedented survival rate at 24
months follow-up and unexpected acquisition of motor milestones
in 12 patients with infantile-onset spinal muscular atrophy
type 1, the most severe type of the disease [33]. After several
investigations, including approaches to increase muscle strength
and function by hyperacetylating agents such as valproic acid [34-
36] or phenylbutyrate [37], anabolic agents such as albuterol [38],
thyreotropin-releasing hormone [39] or growth-hormone [40] and
neuroprotective agents such as gabapentin [41,42], riluzol [43] and
olesoxime [44]. Actual therapeutic developments can be subdivided
into therapies aiming to modify the splicing of SMN2, replacing the
SMN1 gene, or upregulating muscle growth. Figure 2 summarizes
the therapeutic approaches discussed in the following sections and
illustrates the respective molecular mechanisms of action [20].
Figure 2: Illustration of therapeutic approaches in SMA involving molecular mechanisms of action [20] (modified illustration based on Farrar et al. [43] and Pechmann et al. [44]). FSTA = Fast Troponin Activator.
No disease modifying treatments are yet available despite our major progress to curb the infants’ death from the most common genetic disease of the spinal motor neutron. Several SMArestoring therapies are currently in the early phase clinic trials. The most effective treatment is costly and consequently research unaffordable. Gene therapy is allowing the clinical course to be substantially modified for the first time in the history of SMA. Additional therapeutic approaches are currently being taken at advanced stages of clinical development and are likely to expand the spectrum of drug treatment options for SMA. This will add to the complexity of care for patients with SMA. A timely diagnosis and treatment initiation are particularly important to achieve maximum treatment effects. To attain this goal, although it remains unclear when treatment should be initiated in patients presenting high numbers of SMN2 copies. With early onset SMA, the children show a higher rate of scoliosis during the first years of live despite the improved survival and motor developments of symptomatic patients. Greater awareness of this risk, and close monitoring of spinal deformities appear crucial to react early and enable the spine to be stabilized via medical orthoses. As many braces interfere with breathing in the more severely affected patients, choosing the ideal device can be difficult. Surgical interventions entailing ‘growing rod’ systems have been reported to be feasible in children with SMA1. Further experience in this field however is needed to balance the risks and benefits of these interventions. There are orthopedic devices for example standing frames – have not been used in most SMA type 1 patients, but they appear promising for the prophylaxis of joint contractures and to allow age-appropriate positioning even in more severely affected patients. This review may be a source to establish better management of SMA keeping in view the recent success of drug treatment in SMA, since many patients are left with a significant disease burden despite drug treatment.
© 2021 Sanjita Das. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and build upon your work non-commercially.