Josiana Moreira Mar1*, Matheus Moraes Biondo1, Edgar Aparecido Sanches1, Pedro Henrique Campelo2 and Jaqueline de Araújo Bezerra3
1Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas, Brazil
2Faculty of Agrarian Science, Federal University of Amazonas, Brazil
3Federal Institute of Education, Brazil
*Corresponding author: Josiana Moreira Mar, Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas, Brazil
Submission: August 02, 2021;Published: September 22, 2021
ISSN:2640-9208Volume6 Issue2
The search for different methods of new technologies capable of helping the food industry has become increasingly attractive, since it is in constant growth and development, gaining notoriety when it comes to health and well-being. In this way, the introduction of bioactive compounds in high-growing foods, with emphasis on techniques such as microencapsulation, since it consists of protecting the agents provided in the food, with a basic of resisting the beginning of the digestive system, which starts in the stomatognathic apparatus (chewing and swallowing), from the moment it is consumed, reaching the specific location of the human body to perform its function. The aim of this literature review was to address the importance of microencapsulation technology for bioactive compounds in foods. Studies in the area of microencapsulation of microorganisms and bioactive compounds are a promising technology in the food and pharmacological areas, bringing positive results as an ally in the development of adequate foods and maintenance of human health.
Keywords: Bioactive compound, Food industry; Microencapsulation
Encapsulation is a technology of packaging particles (liquid, gaseous or solid) in
edible capsules and is considered a promising tool for the optimization of molecules and
living cells through particles [1]. The carrier material that forms the capsule is known as
an encapsulant, wall or cover material. Encapsulated material has several names such as
encapsulated agent, active agent, core or filler [2]. In addition to the variety of reasons in
the microencapsulation process, bioactive ingredients are encapsulated for better durability
and functionality, preventing their degradation from external agents, in addition to the
microencapsulation process ensuring the control of their delivery to the gastrointestinal
tract, i.e., microencapsulation in Food aims to preserve valuable and sensitive components,
protecting them from adverse environmental conditions such as oxygen, heat and water.
This method helps protect many functional core compounds, such as antioxidants,
enzymes, polyphenols and micronutrients; the delivery of these compounds to the controlled
destination location; and the protection of an unfavorable environment [3,4]. The governing
principles for achieving desirable product stability can be managed by controlling the
microcapsule structure, regardless of whether the products relate to flavors, sweets, coffee,
probiotics, health foods, vitamins, minerals or enzymes [5]. Currently, food products are
gaining strength due to their potential for extracting bioactive compounds mainly due to the
development of new products with nutritional and functional values and benefits.
The Amazon region is well known for the rich biodiversity of fruit species containing large
amounts of bioactive compounds, among which the antioxidant properties of tropical fruits
stand out, in which they have different levels of vitamins C and E, in addition to carotenoids, flavonoids and other polyphenols. From the evaluation of different
drying methods (lyophilization and spray-dry) and carriers (gum
arabic and inulin) in microcapsules, the characterization of the
powder and stability of the bioactive compounds of the extract of
Hibiscus acetosella during storage, revealed characteristic signs
of the acid Caffeoyl hydroxycitric, its half-life proved that the
powders constituted by gum arabic and recovered by the freezedrying
process had better protection and retention of bioactive
compounds [6]. Encapsulated bioactive compounds obtained
through the juices of the species of Cldemia japurensis and Cldemia
hirta encapsulated in maltodextrin of different dextrose equivalents
showed microparticles with good antioxidant properties, where
their Encapsulation Efficiency (EE) ranged from 97.0 to 99.8%,
respectively [7].
Antioxidant compounds, found in fruits and vegetables, are
extremely important substances for the maintenance of the body,
providing protection and health benefits. Therefore, the increased
consumption of both fruits and vegetables should be encouraged,
since several compounds present in the plant cell protect against
various diseases, in addition to providing a quality of life. The juice
of Eugenia punicafolin species was encapsulated in microcapsules
produced with dextrose equivalent to the encapsulation efficiency
of the system was found around 89.7%, where the NMR spectra
revealed the presence of responsible O-glycosylated flavonoids
(quercitrin and myricitrin) due to its high potential for antiglycant
and antioxidant activities [8]. There are functional foods and
beverages found in conventional everyday meals, and they are
made up of ingredients that have chemical properties of great
physiological potential, as they show the regulatory capacity of
bodily functions, reducing the risk of developing diseases.
Quercetin is a classic example of an important flavonoid,
found distributed in the plant kingdom and can be consumed
through daily food. Quercetin’s mechanisms of action have been
gaining prominence in the scientific space, as it demonstrates
a collaborative role in the prevention of injuries caused by risk
factors, such as chronic diseases. Cell microencapsulation products
are at an advanced stage of development, with some being tested
in clinical trials. Several are expected to reach the market in the
coming years [9]. This review article aims to provide detailed and
useful information about the benefit of the microencapsulation
process currently available to the food industry and developed by
the pharmaceutical industry.
© 2021 Josiana Moreira Mar. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and build upon your work non-commercially.