Crimson Publishers Publish With Us Reprints e-Books Video articles

Abstract

Cohesive Journal of Microbiology & Infectious Disease

Applications and Perspectives of Biosensors for Diagnostics in Infectious Diseases

Submission: December 21, 2017; Published: January 12, 2018

DOI: 10.31031/CJMI.2018.01.000503

ISSN: 2578-0190
Volume1 Issue1

Abstract

Infectious diseases are considered a major cause of morbidity and/or mortality worldwide, despite the development of preventive and control strategies. Infectious diseases result from the invasion of body tissues by disease-causing microorganisms. The occurrence and development of infectious diseases are closely associated with the functional state of the immune system. Interleukins play significant roles in modulating the immune response of the host during the course of an infectious disease, contributing to the maintenance of the homeostasis of the immune system. The use of biosensors for the detection of interleukins is a new and important strategy for the diagnosis of the infection and the immunological response profile that occurs for specific diseases, thus helping in the effective diagnosis, and allowing physicians to design treatment in a faster way, which contributes to better prognosis. For example, in the oral environment there are two major infectious diseases: caries and periodontitis. The microbes involved are respectively, Streptococcus mutans and Porphyromonasgingivalis. The presence of specific interleukins in saliva or crevicular fluid will indicate that there is potentially an infectious disease, which could be connected with either caries or periodontal disease. For instance, an indicative for caries could be the presence of IL-6 in saliva, while periodontal disease would be confirmed by the presence of IL-17 in crevicular fluid. In addition, both diseases could be confirmed by the detection of higher levels of each of one of the pathogens. Considering the development of biosensor design and construction, the answer to all these question could be obtained in a single analysis.

Get access to the full text of this article