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Introduction
Since the theory of optical waveguide was proposed in 1966 [1], optical fibers have 

rapidly become the major role of global communication networks, and multiple fields such 
as fiber sensing and fiber lasers have been developed [2-3]. Reducing loss has been a primary 
goal in the development of fibers. However, despite significant efforts, the loss of traditional 
solid-core fiber has only been decreased by 0.0087dB/km in the last 22 years (from 0.1484 in 
2002 [4] to 0.1397dB/km in 2024 [5]). Furthermore, the performance of conventional solid-
core fibers in terms of damage threshold, delay, and radiation resistance is also insufficient 
to meet the requirements of new application scenarios such as high-power laser delivery and 
high-precision fiber optic gyroscopes.

Hollow-core fiber (HCF) seems to be an ideal optical waveguide [6], the greatest 
contribution of which is to confine light transmission within the air core, thereby overcoming 
the ultimate limitation of conventional solid-core fiber-the intrinsic constraints of silica 
materials. Based on the light-guiding mechanism, HCF are divided into hollow-core photonic 
bandgap fiber (HC-PBGF [7]) and hollow-core anti-resonant fiber (HC-ARF [8]). From the 
current development perspective, HC-ARF appear to have the upper hand when the goal is to 
achieve ultra-low loss. The latest result, reported by Microsoft and University of Southampton 
to show that HC-ARF have achieved an ultra-low loss of 0.05dB/km at 1550nm, which is 
nearly three times lower than that of conventional solid-core fiber.

This paper reviews the development of HCF and summarizes recent advancements in 
their applications, including high-power laser delivery and fiber-optic gyroscopes. Finally, we 
provide an outlook on future directions for the HCF.

The development of HCF

The development of HCFs is shown in Figure 1. The concept of photonic crystal fiber was 
first proposed by Philip Russell at the University of Bath in 1991. The first photonic crystal 
fiber was successfully fabricated in 1997 [9]; however, this initial demonstration was still 
based on an index-guiding mechanism, meaning it retained a solid-core structure. Two years 
later, Russell’s team fabricated the world’s first hollow-core photonic crystal fiber (also known 
as HC-PBGF), which experimentally demonstrated for the first time that light could be guided 
within an air core [10]. Subsequently, efforts to advance HC-PBGFs focused on strategies 
such as increasing the cladding air-filling ratio and improving the purity of the fiber preform 
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Figure 1: The development of hollow-core fibers.

The rapid development of HC-ARF has rekindled researchers’ 
interest in HCF. The earliest HC-ARF was a Kagome-cladding fiber 
reported in 2002 by Fetah Benabid at the University of Bath [15]. 
This fiber attracted significant attention because its cladding holes 
lacked a strictly periodic arrangement, yet it could still guide light 
through an air core. This led to the understanding that a different 
light-guiding mechanism-anti-resonant guidance [16]-was at work, 
distinct from the photonic bandgap effect. Over the past decade, 
researchers have proposed various theoretical models to explain this 
guiding mechanism, which has greatly accelerated the advancement 
of HC-ARF. Key breakthroughs contributing to the reduction in 
transmission loss include the introduction of a negative-curvature 
core [17], nodeless design [18], and multi-reflection layers [18]. As 
a result, the attenuation of HC-ARFs has decreased by four orders of 
magnitude over two decades, achieving a record low loss of 0.05dB/
km and a single-draw length of up to 83km. Notably, beyond ultra-
low loss, HC-ARF also exhibits excellent performance in terms of 
delay, bandwidth, radiation resistance, and damage threshold. 

These superior properties have greatly facilitated their application 
in ultra-broadband communication networks, high-power laser 
delivery, and high-precision fiber optic gyroscopes.

The application of HCF

The applications of HC-ARFs are determined by their advantages 
as shown in Figure 2. Considering the ultra-low loss, ultra-low delay 
and ultra-low dispersion, they can be applied in fiber communication 
networks and delay-sensitive systems [19]; considering their ultra-
high damage threshold and ultra-low nonlinearity, they are suitable 
for high-power laser delivery, including KW-level continuous-wave 
lasers [20-21] and GW-level pulsed lasers [22]; and due to their 
radiation resistance, they can be used in high-precision fiber optic 
gyroscope systems [23]. Additionally, when HC-ARFs are extended 
to wavelength bands such as the ultraviolet [24], visible [25] and 
mid-infrared [26], they exhibit better performance than existing 
solid-core optical fibers. Except HC-ARF, HC-PBGF is mostly used in 
sensing field, such as irradiation environment [27].

materials [11]. However, as research progressed, a fundamental 
limitation emerged: a unique mode inherent to HC-PBGFs, known 
as the surface mode [12], proved exceptionally difficult to eliminate. 
This issue confined the transmission loss of HC-PBGFs to the range 

of 3-5dB/km [13] (with a record low of 1.2dB/km reported by the 
University of Bath in 2005 [14]). Ultimately, due to the persistent 
challenge of further loss reduction, HC-PBGFs were gradually 
abandoned.
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Figure 2: The application of hollow-core fibers.

Summary
As an emerging technology, HCFs have transitioned from 

theory to reality, and advanced from laboratory research to mass 
production after more than two decades of development. While HC-
PBGFs have not demonstrated significant advantages in ultra-low 
loss, they can achieve a high birefringence on the order of 10⁻⁴ and 
a millimeter-scale bending radius [28]-performance metrics that 
remain challenging for HC-ARFs to match. In contrast, the absolute 
advantages of HC-ARFs have facilitated their demonstration 
applications in multiple fields and attracted attention from 
researchers worldwide such as ultra-low loss, ultra-low delay and 
other aspects. Looking ahead, further increasing the single drawing 
length, optimizing the uniformity of fiber structure, and promoting 
their widespread application in more fields will be the development 
trends of HC-ARFs.
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