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Abstract

Multi core fiber (MCF)-based shape sensing has emerged as a promising technology for real time, three
dimensional reconstruction of complex structures. By integrating multiple light guiding cores within a
single cladding, MCF sensors enable simultaneous measurement of curvature, twist, and strain, providing
superior spatial resolution and robustness compared with traditional single core configurations. This
review summarizes recent progress in MCF design, interrogation techniques, and reconstruction algo-
rithms, and discusses current challenges and future development trends toward high precision, miniatur-
ized, and intelligent sensing systems for medical, robotic, and structural applications.
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Introduction

Shape sensing has become a key enabling technology in minimally invasive surgery,
soft robotics, and structural health monitoring [1-6]. Traditional reconstruction methods-
including fiber Bragg gratings (FBGs) or interferometric arrays-often face limitations in
spatial continuity, cost, wiring complexity, and susceptibility to environmental fluctuations
[7-9].

Multi core fiber (MCF) embeds several light guiding cores symmetrically within a
single cladding. Each core experiences a distinct strain profile during bending or twisting,
allowing determination of local curvature and torsion via differential phase or wavelength
measurements [10-12]. Over the past decade, MCF based shape sensors have evolved rapidly,
offering compact, flexible, and sensitive alternatives to conventional strain networks.

Principles of multi core fiber shape sensing

The basic principle relies on detecting optical path length changes among multiple
cores. When the fiber bends, the outer cores undergo different elongations or compressions,
producing measurable phase shifts or spectral changes [13]. Common interrogation
techniques include:

Rayleigh based Optical Frequency Domain Reflectometry (OFDR), enabling distributed
strain and curvature reconstruction with sub millimeter spatial resolution [14,15]; FBG
array-based methods for localized sensing but with discrete sampling [16]; Brillouin based
systems, which offer temperature insensitive strain and twist measurement [17]. Geometric
algorithms estimate curvature vectors along the fiber and integrate them to recover the global
3D shape.

Recent progress and representative advances
Fiber structure and materials

Advances in fiber drawing have produced seven core, nineteen core [18], and helically
twisted MCFs with continuous Bragg gratings [19], improving torsion resolution and cross
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sensitivity discrimination. Some designs introduce polarization
maintaining (PM) cores [20] or tailored dopant distributions for
temperature stability (Figure 1).
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Figure 1: Recent trending research areas in multi-core
fiber development.

Interrogation systems

Optical frequency domain reflectometry (OFDR) is now a
major tool for high resolution distributed shape sensing, enabling
simultaneous curvature and twist retrieval; FPGA based processing
reduces latency for real time monitoring [21].

Reconstruction algorithms

Machine learning assisted calibration and Kalman filter based
dynamic tracking improve accuracy under complex deformations.
Hybrid approaches that combine physical models with data driven
priors provide noise suppression and better generalization [22].

Application demonstrations

Medical: MCF sensors integrated into catheters and guidewires
enable accurate 3D tracking in minimally invasive procedures [23].

Soft robotics: Embedding MCFs in continuum robots enables
self sensing feedback for closed loop control [24,25].

Structural monitoring: Large scale MCF networks monitor
deformation in aerospace and flexible structures [26] (Figure 2).
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Figure 2: (1) Sensing system and structure of the biomimetic soft finger [24]. (2) Experimental verification system of
discontinuous deformation monitoring of smart aerospace structure [26]. (3) Response of the electronic skin [27]. (4)
Complex deformation and shape reconstruction in magnetic structures [25].

Challenges and future trends

Despite rapid progress, several challenges remain before
multi-core fiber (MCF) shape sensing can achieve large-scale
applications. Temperature-induced cross-sensitivity must be
mitigated through hybrid sensing schemes or optimized core
geometry. Accurate system calibration is equally essential, as even
minor geometric deviations among cores can accumulate into
significant reconstruction errors. Robust fan-in/fan-out packaging
and seamless integration are required for long-term reliability,
while the massive data volume from distributed interrogation
calls for efficient compression and intelligent analysis algorithms
[10,27-30].

Recent research trends also emphasize Rayleigh scattering
enhancement through controlled core doping or artificial scattering
centers, which can improve signal-to-noise ratio and spatial
resolution in OFDR-based sensing. In parallel, the development of
high-temperature-resistant coatings and protective buffer layers
is vital for ensuring environmental adaptability, enabling stable
performance under harsh or thermally dynamic conditions.

Future directions include: (i) integration with silicon photonics
for compact modules; (ii) Al based real time 3D reconstruction;
(iii) specialty fibers that combine sensing and actuation; and (iv)
further miniaturization for endoscopic and robotic deployment.
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Conclusion

The development of MCF-based shape sensing signifies a
transformative stage in modern fiber-optic sensing. Advances in
fiber design, interrogation architecture, and algorithmic modelling
are collectively driving improvements in accuracy, compactness,
and intelligence, reinforcing its potential for integration into next-
generation medical, robotic, and structural sensing platforms.
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