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Abstract
Multi core fiber (MCF)-based shape sensing has emerged as a promising technology for real time, three 
dimensional reconstruction of complex structures. By integrating multiple light guiding cores within a 
single cladding, MCF sensors enable simultaneous measurement of curvature, twist, and strain, providing 
superior spatial resolution and robustness compared with traditional single core configurations. This 
review summarizes recent progress in MCF design, interrogation techniques, and reconstruction algo-
rithms, and discusses current challenges and future development trends toward high precision, miniatur-
ized, and intelligent sensing systems for medical, robotic, and structural applications.
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Introduction
Shape sensing has become a key enabling technology in minimally invasive surgery, 

soft robotics, and structural health monitoring [1-6]. Traditional reconstruction methods-
including fiber Bragg gratings (FBGs) or interferometric arrays-often face limitations in 
spatial continuity, cost, wiring complexity, and susceptibility to environmental fluctuations 
[7-9].

Multi core fiber (MCF) embeds several light guiding cores symmetrically within a 
single cladding. Each core experiences a distinct strain profile during bending or twisting, 
allowing determination of local curvature and torsion via differential phase or wavelength 
measurements [10-12]. Over the past decade, MCF based shape sensors have evolved rapidly, 
offering compact, flexible, and sensitive alternatives to conventional strain networks.

Principles of multi core fiber shape sensing
The basic principle relies on detecting optical path length changes among multiple 

cores. When the fiber bends, the outer cores undergo different elongations or compressions, 
producing measurable phase shifts or spectral changes [13]. Common interrogation 
techniques include: 

Rayleigh based Optical Frequency Domain Reflectometry (OFDR), enabling distributed 
strain and curvature reconstruction with sub millimeter spatial resolution [14,15]; FBG 
array-based methods for localized sensing but with discrete sampling [16]; Brillouin based 
systems, which offer temperature insensitive strain and twist measurement [17]. Geometric 
algorithms estimate curvature vectors along the fiber and integrate them to recover the global 
3D shape.

Recent progress and representative advances
Fiber structure and materials

Advances in fiber drawing have produced seven core, nineteen core [18], and helically 
twisted MCFs with continuous Bragg gratings [19], improving torsion resolution and cross 
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sensitivity discrimination. Some designs introduce polarization 
maintaining (PM) cores [20] or tailored dopant distributions for 
temperature stability (Figure 1).

Figure 1: Recent trending research areas in multi-core 
fiber development.

Interrogation systems

Optical frequency domain reflectometry (OFDR) is now a 
major tool for high resolution distributed shape sensing, enabling 
simultaneous curvature and twist retrieval; FPGA based processing 
reduces latency for real time monitoring [21].

Reconstruction algorithms

Machine learning assisted calibration and Kalman filter based 
dynamic tracking improve accuracy under complex deformations. 
Hybrid approaches that combine physical models with data driven 
priors provide noise suppression and better generalization [22].

Application demonstrations

Medical: MCF sensors integrated into catheters and guidewires 
enable accurate 3D tracking in minimally invasive procedures [23]. 

Soft robotics: Embedding MCFs in continuum robots enables 
self sensing feedback for closed loop control [24,25]. 

Structural monitoring: Large scale MCF networks monitor 
deformation in aerospace and flexible structures [26] (Figure 2).

Figure 2: (1) Sensing system and structure of the biomimetic soft finger [24]. (2) Experimental verification system of 
discontinuous deformation monitoring of smart aerospace structure [26]. (3) Response of the electronic skin [27]. (4) 

Complex deformation and shape reconstruction in magnetic structures [25].

Challenges and future trends
Despite rapid progress, several challenges remain before 

multi-core fiber (MCF) shape sensing can achieve large-scale 
applications. Temperature-induced cross-sensitivity must be 
mitigated through hybrid sensing schemes or optimized core 
geometry. Accurate system calibration is equally essential, as even 
minor geometric deviations among cores can accumulate into 
significant reconstruction errors. Robust fan-in/fan-out packaging 
and seamless integration are required for long-term reliability, 
while the massive data volume from distributed interrogation 
calls for efficient compression and intelligent analysis algorithms 
[10,27-30].

Recent research trends also emphasize Rayleigh scattering 
enhancement through controlled core doping or artificial scattering 
centers, which can improve signal-to-noise ratio and spatial 
resolution in OFDR-based sensing. In parallel, the development of 
high-temperature-resistant coatings and protective buffer layers 
is vital for ensuring environmental adaptability, enabling stable 
performance under harsh or thermally dynamic conditions.

Future directions include: (i) integration with silicon photonics 
for compact modules; (ii) AI based real time 3D reconstruction; 
(iii) specialty fibers that combine sensing and actuation; and (iv) 
further miniaturization for endoscopic and robotic deployment.
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Conclusion
The development of MCF-based shape sensing signifies a 

transformative stage in modern fiber-optic sensing. Advances in 
fiber design, interrogation architecture, and algorithmic modelling 
are collectively driving improvements in accuracy, compactness, 
and intelligence, reinforcing its potential for integration into next-
generation medical, robotic, and structural sensing platforms.
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