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Introduction
Fluorescent carbon nanoparticles or carbon dots (C-dots) were discovered in 2004 during 

the process of carbon nanotube fragment purification [1-3]. These nanomaterials are widely 
reported to have average sizes typically smaller than 10nm, are spherical or semispherical 
in shape, are water soluble, and have fluorescent properties, enabling a wide range of bio 
applications [4-6]. Carbon dot synthesis has recently attracted increasing attention and 
interest due to its sustainable synthesis, low toxicity, low cost, and easy implementation [4-
7]. These carbon-based nanoparticles have been widely explored, but green syntheses stand 
out because the raw materials used as carbon sources are components of plants and fruits 
(such as roots, seeds, leaves, flours, fruit peels, and extracts) and other foods [2,4,8-10]. The 
first reported green synthesis using coffee grounds as a carbon source occurred in 2012, with 
C-dots of approximately 5±2nm in size [8]. Several novel C-dots have been proposed using 
different carbon sources [8,11-22], and this work presents an overview of these carbon dots, 
the values of their average sizes, fluorescence quantum yield (η), fluorescence lifetime (τ) 
values, and high potential for reported textile applications [23-27].

Discussion
Figure 1 presents the timeline of the main raw carbon sources and methods used in green 

synthesis from 2012-2024 [8,11-22]. The synthesis C-dots involves hydrothermal, pyrolysis, 
and microwave methods [11,16,17]. Several carbon sources, such as coffee grounds, sweet 
pepper, corn flour, Jinhua Bergamot, Lotus roots, Acacia Concinna seeds, Papaya waste, cherry 
tomatoes, microalgae Spirulina, grapefruit juice, Naregamia alata leaves and Pumpkin seeds, 
used for C-dot green synthesis are presented in Figure 1. The fluorescence quantum efficiency 
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Abstract
Since their discovery in 2004, fluorescent carbon dots (C-dots) have been in increasing development with 
a wide range of applications. Since 2012, the use of carbon sources made from raw materials such as seeds, 
flowers, and others has increased, and the green synthesis of fluorescent carbon dots has increased. These 
C-dots have potential in several bioapplications due to their biocompatibility, stability, relatively low cost, 
biodegradability, nontoxicity, and environmental friendliness. This work discussed C-dot synthesis using 
different raw materials with different carbon sources and the main synthesis methods. The photophysical 
parameters of the fluorescence quantum yield () and fluorescent lifetime () are presented for green 
synthesized nitrogen-doped and undoped C-dots as important nanomaterial for environmental control. 
These carbon dot-based materials can be used to minimize waste in the textile industry and enhance 
their waste properties as possible antifungal and bactericidal agents for bioapplications. An overview of 
the different C-dots used for textile engineering applications and degrading dyes typically used in textile 
fabrics is presented. 
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(η) and fluorescence lifetime (τ) are given for some C-dots reported 
in Table 1. A hydrothermal method was used for all the synthesized 

C-dots, as shown in Table 1. These photophysical characteristics are 
crucial for fluorescence applications of C-dots.

Figure 1: Some raw carbon sources and methods used in C-dot green synthesis from 2012-2024 [8,11-22].

Table 1: Several carbon sources have been presented for C-dot green hydrothermal synthesis and textile applications. 
The average sizes of the C-dots and the  and  parameters are presented.
aAverage lifetime.

Carbon Source Average Size (nm)  ns Applications

Rice straw (71-101) 24.03 7.55 Cotton textile mask as a possible fluorescent sensor for detecting 
acetone vapor in the breath of diabetic patients [23]

Indigo (3.5±0.5) 3.8 3a

Carcuma longa (2.6±0.5) 0.8 3.9a Textile printing for anti-counterfeiting [24]

Sophora japonica L. (5.2±0.7) 1 1.0a

Date fruit (charcoal) (5±6) 14.5 -- Functional textiles with better UV protection, antibacterial activity, 
and potential for heavy metal detection [25]

Syzygium cumini L. seed 
extract 6.3 15.9 [26] 5.2 [26] Biomedical textiles with antimicrobial properties [27]

Green tea (Tetley) and 
chitosan 6 -- -- Functional textiles with antioxidant and antimicrobial properties for 

possible smart textiles [28]

Table 1 presents different C-dots synthesized by the green 
method and used in textile engineering applications [23-28]. 
Rice straw was used as a carbon source in nitrogen-doped C-dot 
synthesis and applied as a fluorescent sensor for acetone detection 
in cotton in textile masks [23]. The natural dyes extracted from 
Curcuma longa and Sophora japonica L. were used in C-dot synthesis 
and tested as possible textiles for anti-counterfeiting [24]. Other 

textile applications using C-dots are presented in Table 1. The 
values obtained for η and τ for rice straw as raw materials highlight 
the fluorescent sensor textile applications of C-dots.

Table 2 presents different green processes for C-dot synthesis 
[29-38], such as hydrothermal, pyrolyzed, and calcination 
processes. These nanodots are potential candidates for detecting 
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and degrading dyes typically used in textile fabrics [29,31,32,35-
38]. C-dots and N-doped C-dots were synthesized using carbon 
sources such as peels, seeds, fruits, and leaves. Table 2 presents the 
average C-dot sizes and fluorescence quantum yield parameters η. 
For doped C-dots, L-aspartic acid or aqueous ammonia was used 

for nitrogen doping [36,37], and green synthesis was achieved via 
hydrothermal processes. N-doped C-dots have been reported to 
have potential in wastewater analysis for Congo Red dye detection 
and Safranin-O dye degradation [36,37]. Table 2 presents other 
C-dot applications for the detection and degradation of dyes.

Table 2: The different carbon sources used in green synthesis and the average of the C-dots used in dye removal 
applications in textiles are presented.
aCarica papaya juice was used as a carbon source [30].
bC-dots were doped with nitrogen (pyrolysis for 3h) [32].
cA hydrothermal method was used, and C-dots with a size of 1nm were obtained [33].
dThe excitation wavelength was 380nm [34].

Carbon Source Synthesis Method Average Size (nm)  Doping Material Application

Canon ball fruit Hydrothermal 11.2 7.24 -- Sensor for metal ion detection and catalytic 
reduction of textile dyes [29]

Papaya peel Hydrothermal 4.5 7.0a [30] --
Nanocomposites were tested for 

photodegradation of textile dye methylene blue 
[31]

Onion (Allium cepa) Pyrolysis 4.48b [32] 6.2c [33] Ammonia (NH3) Decontamination of methylene blue and 
rhodamine B dyes [32]

Olive pomace Pyrolysis and 
oxidation (2.8±0.6) 19d [34] -- Photodegradation of methylene blue dye 

pollutants [35]

Ziziphus mauritiana 
fruit Hydrothermal (7±2) -- Aqueous ammonia Degradation of Safranin-O dye pollutant [36]

Rambutan seed Hydrothermal 3.07 16.87 L-aspartic acid Detection of Congo Red Dye [37]

Azadirachta indica 
leaves Calcination 3.0-8.0 42.3 -- Sensing and degradation of Malachite green [38]

Furthermore, other carbon dots or nanoparticles have been 
reported in textile applications [39,40]. The carbon quantum dots 
synthesized by the hydrothermal method can be highlighted by 
using banana leaves as a carbon source. These nanomaterials are 
applied for superhydrophobic coating on fabrics for oil and water 
separation [39]. On the other hand, graphene films integrated with 
Prussian blue and quantum dots have been reported for textile 
devices [40]. These proposed advanced films show potential for 
wearable biosensors and photoelectronic devices, such as glucose 
and H2O2 monitoring sensors [40]. Red-emissive carbon dots 
(R-Cdots) are used to construct smart fabrics. The hydrothermal 
synthesis of these R-Cdots uses o-phenylenediamine and catechol 
in ethanol as carbon sources. R-Cdots exhibit fluorescent patterns 
on cotton fabrics, are pH sensitive, and can be used for MnO4 
detection in aqueous solutions [41]. Finally, fabric scraps can also 
be reused as a carbon source for new carbon dot synthesis, ranging 
from leather scraps to hospital masks [42-44].

Conclusion
Since the first green synthesis of carbon dots (C-dots), different 

carbon sources obtained from seeds, leaves, peels, and other 
parts of plants have been used in novel synthesis processes. The 
fluorescence properties, water solubility, and low toxicity are 
characteristics of carbon dots that stand out for their wide range 
of applications. In textile applications, C-dots have been used in 
different applications, such as in printing on textiles to combat 
counterfeiting and in textiles, highlighting their antioxidant and 

antimicrobial properties. Another important carbon nanoparticle 
approach is evaluated for the detection and degradation of dyes 
commonly used in textile fabrics. Over the years, important new 
applications of carbon dots have emerged in different research 
areas of investigation, increasing opportunities for the development 
of relevant applications in textile engineering. 
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