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Abstract

Olfactory dysfunction is one of the most consistent and earliest sensory abnormalities observed in
schizophrenia, often preceding the onset of overt psychotic symptoms and reflecting central neural circuit
dysfunction rather than peripheral sensory loss. Growing evidence suggests that olfactory deficits may
provide a unique window into the molecular and cellular mechanisms underlying disease vulnerability.
In this hypothesis-driven framework, we propose that schizophrenia arises, in part, from the convergence
of disrupted GNAL-mediated signaling, impaired inhibitory Gai/o pathways and inflammation-associated
dysregulation of phosphoinositide 3-kinase delta (PI3K§). We suggest that altered GNAL-dependent
cAMP signaling contributes to deficits in sensory and dopaminergic amplification, while impaired
Gai/o signaling represents a primary driver of excitatory/inhibitory imbalance underlying cognitive
and psychotic symptoms. Concurrently, chronic inflammatory states may destabilize PI3K§ signaling,
indirectly influencing olfactory and cortical neural function. Impaired neural resilience within olfactory
circuits, including reduced Sirtl-dependent neurogenic support and genomic stability, may further
exacerbate early olfactory dysfunction. Together, this integrative model provides a testable mechanistic
link between peripheral inflammatory processes, olfactory system vulnerability and central inhibitory
signaling deficits in schizophrenia, with implications for early biomarker development and novel
therapeutic targeting.
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Introduction

Schizophrenia is a complex neuropsychiatric disorder characterized by cognitive deficits,
affective disturbances and psychotic symptoms. Among the earliest detectable abnormalities
are olfactory deficits, including impaired odor identification and altered hedonic perception.
Epidemiological evidence suggests that environmental pollutants and chronic inflammatory
conditions of the upper respiratory tract may increase susceptibility to schizophrenia,
potentially through peripheral inflammatory mechanisms impacting the olfactory system [1].

Olfaction is uniquely positioned among sensory modalities due to its direct connections
with frontal and temporal brain regions, which are central to cognitive and emotional
processing in schizophrenia. Consequently, olfactory dysfunction may serve as an early
biomarker of disease vulnerability, reflecting structural and functional alterations in neural
circuits that contribute to cognitive and affective deficits [2].

The GNAL gene encodes Goolf, a stimulatory G-protein essential for odorant signal
transduction in Olfactory Sensory Neurons (OSNs). Gaolf couple’s olfactory receptors to
Adenylyl Cyclase 3 (ADCY3), initiating cAMP production and generating action potentials
in response to odorants. Mutations or loss of GNAL function result in severe olfactory
impairment, highlighting its critical role in sensory perception [3,4]. Beyond olfaction, Gaolf
is highly expressed in the basal ganglia, where it mediates dopaminergic and adenosinergic
signaling through coupling to Adenylyl Cyclase 5 (AC5). Disruption of Gaolf impairs dopamine-
stimulated cAMP production, contributing to motor and cognitive dysfunction [5].
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Inhibitory G-proteins (Gai/o) regulate dopamine and
GABA neurotransmission and their dysfunction contributes to
excitatory/inhibitory (E/I) imbalances central to schizophrenia
pathology. Reductions in Gai/o subunits, DARPP-32 and GABAergic
interneuron function have been documented in schizophrenia,
linking impaired inhibitory signaling to cognitive and positive
symptoms [6-9]. Within this framework, disrupted GNAL-mediated
signaling may contribute to sensory and dopaminergic amplification
deficits, whereas impaired Gai/o signaling represents the primary
driver of inhibitory imbalance underlying cognitive and psychotic
symptoms.

In olfactory sensory neurons, inhibitory Gai/o pathways
also modulate odorant signaling via phosphoinositide 3-kinase
regulation [10]. PI3K§, a class IA PI3K with a catalytic p1108
subunit encoded by PIK3CD, plays a critical role in immune
regulation. Chronic inflammatory states, such as sinusitis, may
destabilize PI3K§ activity, indirectly influencing neuronal and
olfactory signaling and increasing schizophrenia vulnerability [11-
13]. Evidence of elevated PIK3CD expression in patients supports
a mechanistic link between peripheral immune dysregulation and
central neural circuit dysfunction [14-16].

Chronic eosinophilic inflammation, tightly regulated by
PI3KS, has been associated with psychological stress, anxiety
and depressive symptoms, highlighting a pathway through which
immune dysregulation may influence neuropsychiatric outcomes
[17-19]. Preclinical studies further demonstrate that the p1108
subunit regulates eosinophil trafficking and airway inflammation,
reinforcing the connection between PI3K6-driven immune states
and systemic conditions capable of modulating brain function.

Hypothesis

We propose that schizophrenia arises, at least in part, from
the convergence of impaired inhibitory signaling and immune-
mediated vulnerability within neural circuits. Specifically:

A.  Dysfunctional inhibitory Gai/o signaling in cortical and
olfactory neurons impairs excitatory/inhibitory balance,
contributing to cognitive deficits and psychotic symptoms.

B.  Chronic inflammation-induced dysregulation of PI3K§
(p1108) disrupts immune-olfactory signaling pathways,
increasing susceptibility to neural circuit instability.

Impaired PI3K§ function in the olfactory system may contribute
to early sensory deficits, while concurrent cortical inhibitory
signaling deficits underlie cognitive and psychotic manifestations.
Olfactory dysfunction reflects central abnormalities in frontal,
temporal and striatal circuits rather than peripheral sensory
impairment. Experimental that
olfactory function depends on continuous neurogenic support and
genomic stability within subventricular zone-derived neural stem
cells, maintained by Sirtl activity. Integrating these findings, we
hypothesize that impaired neural resilience in olfactory circuits
interacts with disrupted GNAL-mediated cAMP signaling and
deficient inhibitory Gai/o pathways, while chronic inflammation-

evidence further indicates

associated PI3K8 dysregulation destabilizes these networks,
linking early olfactory deficits to widespread inhibitory imbalance
and cognitive dysfunction [20,21].

Conclusion and Recommendations

This hypothesis integrates olfactory dysfunction, GNAL-
mediated signaling and PI3K§ dysregulation into a unified
mechanistic framework for schizophrenia pathophysiology. To test
this model, future studies should:

a) Characterize Gai/o and Gaolf signaling in olfactory
sensory neurons and basal ganglia circuits from schizophrenia
patients.

b)  Assess PI3KS expression and stability in both peripheral
immune cells and central nervous system tissues.

c¢) Evaluate chronic inflammation and eosinophil activity as
modulators of neural signaling.

Elucidating these pathways may identify novel biomarkers for
early disease detection and highlight PI3K$ signaling and inhibitory
G-protein pathways as potential therapeutic targets, offering a
mechanistic rationale for interventions that address both neural
and immune contributions to schizophrenia.
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