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Abstract

GABAA receptors (GABAA_AA) are ligand-gated chloride channels mediating fast and slow inhibitory
signaling in the nervous system. §-Subunit-containing receptors exhibit high GABA affinity, extrasynaptic
localization and marked sensitivity to endogenous neurosteroids, generating tonic inhibitory currents
that regulate baseline excitability in the CNS. Emerging evidence indicates that these receptors are also
expressed in peripheral tissues, including the skin, retina, olfactory epithelium, gastrointestinal tract,
kidney, immune cells and reproductive organs. They are notably absent in the heart, highlighting a
selective role in sensory modulation. We hypothesize that §-subunit-containing GABAA_AA receptors
mediate local and systemic sensory inhibition through tonic, extrasynaptic signaling and neurosteroid-
dependent modulation. This network stabilizes neuronal and sensory activity, prevents hyperexcitability
and may coordinate body-wide sensory responsiveness. Dysregulation of this system could contribute to
disorders such as chronic pain, inflammatory skin disease, olfactory dysfunction and neuropsychiatric
conditions.
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Introduction

GABAA receptors (GABAA_AA) are chloride-selective ligand-gated ion channels that
mediate inhibitory signaling throughout the Central Nervous System (CNS). Among
their subtypes, §-subunit-containing receptors are distinguished by high GABA affinity,
extrasynaptic localization and sensitivity to endogenous neurosteroids [1-4]. In the CNS, these
receptors generate tonic inhibitory currents that stabilize neuronal firing, regulate network
oscillations and modulate baseline excitability [1,3,4]. Unlike synaptic y-subunit-containing
receptors, 8-containing GABAA_AA receptors are poorly responsive to benzodiazepines
and specialized for continuous, rather than phasic, inhibition [2,3]. Although initially
considered CNS-specific, §-containing GABAA_AA receptors are now detected in multiple
peripheral tissues, including the skin, retina, olfactory epithelium, gastrointestinal tract,
kidney, immune cells and reproductive organs [5-9]. These tissues are regularly exposed to
mechanical, chemical or inflammatory stimuli and require mechanisms to suppress baseline
excitability and prevent sensory overload. In contrast, §-containing receptors are absent
in cardiomyocytes, consistent with the heart’s reliance on continuous depolarization and
precise excitatory conduction [5,9].

Hypothesis

We propose that §-subunit-containing GABAA_AA receptors mediate local sensory
inhibition in peripheral tissues and coordinate systemic sensory inhibition through tonic,
extrasynaptic signaling mechanisms analogous to those in the CNS. This system is likely
modulated by circulating neurosteroids, establishing a body-wide inhibitory tone that
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prevents sensory hyperexcitability under stress or pathological
conditions . This hypothesis provides a unifying framework for
understanding how §&-containing receptors regulate excitability
across central and peripheral tissues. In the skin, keratinocytes
and resident immune cells produce and respond to GABA, with
tonic GABAergic signaling regulating itch, pain, inflammation and
epidermal homeostasis [6,10,11]. In sensory organs such as the
retina and olfactory epithelium, tonic inhibition maintains optimal
signal-to-noise ratios during sustained stimulation [7,8,12]. The
high GABA affinity and extrasynaptic distribution of §-containing
receptors make them well suited to suppress low-level, persistent
sensory input and prevent hyperexcitability, supporting their
hypothesized role. §-Containing GABAA_AA receptors are highly
sensitive to endogenous neurosteroids, including allopregnanolone
and tetrahydrodeoxycorticosterone [4,13]. Fluctuations in
neurosteroid levels due to stress, hormonal changes, inflammation
or disease may synchronously modulate receptor activity across
tissues, producing a coordinated inhibitory tone. This mechanism
could dampen global sensory responsiveness and prevent sensory
overload. The absence of §-containing GABAA_AA receptors in
cardiac tissue reinforces their specialization for sensory regulation
rather than continuous excitatory activity [5,9]. Enrichment
in sensory, epithelial, immune and neural tissues reflects an
evolutionarily conserved mechanism to stabilize excitability and
prevent peripheral hyperactivity.

Conclusion

5-Subunit-containing GABAA_AA receptors form a distributed,
neurosteroid-sensitive inhibitory network spanning central and
peripheral tissues. Our hypothesis-that these receptors mediate
both local and systemic sensory inhibition-explains their functional
specialization and tissue distribution. By suppressing baseline
excitability, preventing peripheral sensitization and coordinating
global sensoryresponsiveness, §-containing receptors may maintain
normal sensory homeostasis and mitigate hyperexcitability under
stress. Dysregulation of this network could contribute to sensory
amplification disorders, including chronic pain, inflammatory skin
disease, olfactory dysfunction and neuropsychiatric conditions.
Future studies combining tissue-specific receptor mapping,
neurosteroid manipulation and functional sensory assays are
essential to validate this hypothesis and explore therapeutic
interventions targeting tonic inhibition [14-16].
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