

δ -Subunit GABAA Receptors and Tonic Inhibition: Implications for Sedation and Anesthetic Mechanisms

ISSN: 2637-7748

Mosab Nouraldein Mohammed Hamad*

Assistant professor of Microbiology, Excellence Research Center, Elsheikh Abdallah Elbadri University, Sudan

Abstract

GABAA receptors (GABAA_AA) are ligand-gated chloride channels mediating fast and slow inhibitory signaling in the nervous system. δ -Subunit-containing receptors exhibit high GABA affinity, extrasynaptic localization and marked sensitivity to endogenous neurosteroids, generating tonic inhibitory currents that regulate baseline excitability in the CNS. Emerging evidence indicates that these receptors are also expressed in peripheral tissues, including the skin, retina, olfactory epithelium, gastrointestinal tract, kidney, immune cells and reproductive organs. They are notably absent in the heart, highlighting a selective role in sensory modulation. We hypothesize that δ -subunit-containing GABAA_AA receptors mediate local and systemic sensory inhibition through tonic, extrasynaptic signaling and neurosteroid-dependent modulation. This network stabilizes neuronal and sensory activity, prevents hyperexcitability and may coordinate body-wide sensory responsiveness. Dysregulation of this system could contribute to disorders such as chronic pain, inflammatory skin disease, olfactory dysfunction and neuropsychiatric conditions.

Keywords: δ -subunit GABAA receptors; Tonic inhibition; Extrasynaptic signaling; Neurosteroids; Peripheral sensory modulation; CNS regulation; Sensory hyperexcitability

Introduction

GABAA receptors (GABAA_AA) are chloride-selective ligand-gated ion channels that mediate inhibitory signaling throughout the Central Nervous System (CNS). Among their subtypes, δ -subunit-containing receptors are distinguished by high GABA affinity, extrasynaptic localization and sensitivity to endogenous neurosteroids [1-4]. In the CNS, these receptors generate tonic inhibitory currents that stabilize neuronal firing, regulate network oscillations and modulate baseline excitability [1,3,4]. Unlike synaptic γ -subunit-containing receptors, δ -containing GABAA_AA receptors are poorly responsive to benzodiazepines and specialized for continuous, rather than phasic, inhibition [2,3]. Although initially considered CNS-specific, δ -containing GABAA_AA receptors are now detected in multiple peripheral tissues, including the skin, retina, olfactory epithelium, gastrointestinal tract, kidney, immune cells and reproductive organs [5-9]. These tissues are regularly exposed to mechanical, chemical or inflammatory stimuli and require mechanisms to suppress baseline excitability and prevent sensory overload. In contrast, δ -containing receptors are absent in cardiomyocytes, consistent with the heart's reliance on continuous depolarization and precise excitatory conduction [5,9].

Hypothesis

We propose that δ -subunit-containing GABAA_AA receptors mediate local sensory inhibition in peripheral tissues and coordinate systemic sensory inhibition through tonic, extrasynaptic signaling mechanisms analogous to those in the CNS. This system is likely modulated by circulating neurosteroids, establishing a body-wide inhibitory tone that

***Corresponding author:** Mosab Nouraldein Mohammed Hamad, Assistant Professor of Microbiology, Excellence Research Center, Elsheikh Abdallah Elbadri University, Berber, Sudan

Submission: January 21, 2026

Published: February 03, 2026

Volume 6 - Issue 2

How to cite this article: Mosab Nouraldein Mohammed Hamad*. δ -Subunit GABAA Receptors and Tonic Inhibition: Implications for Sedation and Anesthetic Mechanisms. *Tech Neurosurg Neurol.* 6(2). TNN. 000631. 2026. DOI: [10.31031/TNN.2026.06.000631](https://doi.org/10.31031/TNN.2026.06.000631)

Copyright@ Mosab Nouraldein Mohammed Hamad, This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and redistribution provided that the original author and source are credited.

prevents sensory hyperexcitability under stress or pathological conditions. This hypothesis provides a unifying framework for understanding how δ -containing receptors regulate excitability across central and peripheral tissues. In the skin, keratinocytes and resident immune cells produce and respond to GABA, with tonic GABAergic signaling regulating itch, pain, inflammation and epidermal homeostasis [6,10,11]. In sensory organs such as the retina and olfactory epithelium, tonic inhibition maintains optimal signal-to-noise ratios during sustained stimulation [7,8,12]. The high GABA affinity and extrasynaptic distribution of δ -containing receptors make them well suited to suppress low-level, persistent sensory input and prevent hyperexcitability, supporting their hypothesized role. δ -Containing GABA_{AA} receptors are highly sensitive to endogenous neurosteroids, including allopregnanolone and tetrahydrodeoxycorticosterone [4,13]. Fluctuations in neurosteroid levels due to stress, hormonal changes, inflammation or disease may synchronously modulate receptor activity across tissues, producing a coordinated inhibitory tone. This mechanism could dampen global sensory responsiveness and prevent sensory overload. The absence of δ -containing GABA_{AA} receptors in cardiac tissue reinforces their specialization for sensory regulation rather than continuous excitatory activity [5,9]. Enrichment in sensory, epithelial, immune and neural tissues reflects an evolutionarily conserved mechanism to stabilize excitability and prevent peripheral hyperactivity.

Conclusion

δ -Subunit-containing GABA_{AA} receptors form a distributed, neurosteroid-sensitive inhibitory network spanning central and peripheral tissues. Our hypothesis—that these receptors mediate both local and systemic sensory inhibition—explains their functional specialization and tissue distribution. By suppressing baseline excitability, preventing peripheral sensitization and coordinating global sensory responsiveness, δ -containing receptors may maintain normal sensory homeostasis and mitigate hyperexcitability under stress. Dysregulation of this network could contribute to sensory amplification disorders, including chronic pain, inflammatory skin disease, olfactory dysfunction and neuropsychiatric conditions. Future studies combining tissue-specific receptor mapping, neurosteroid manipulation and functional sensory assays are essential to validate this hypothesis and explore therapeutic interventions targeting tonic inhibition [14–16].

References

- Farrant M, Nusser Z (2005) Variations on an inhibitory theme: Phasic and tonic activation of GABA(A) receptors. *Nat Rev Neurosci* 6(3): 215–229.
- Brickley SG, Mody I (2012) Extrasynaptic GABA_{AA} receptors: Their function in the CNS. *Trends Neurosci* 35(6): 401–409.
- Semyanov A, Walker MC, Kullmann DM (2003) GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. *Nat Neurosci* 6(5): 484–490.
- Belelli D, Lambert JJ (2005) Neurosteroids: Endogenous regulators of the GABA(A) receptor. *Nat Rev Neurosci* 6(7): 565–575.
- Watanabe M, Maemura K, Kanbara K, Tamayama T, Hayasaki H (2002) GABA and GABA receptors in the central nervous system and other organs. *Int Rev Cytol* 213: 1–47.
- Denda M, Nakatani M, Ikeyama K, Tsutsumi M, Denda S (2007) Epidermal keratinocytes as the forefront of the sensory system. *Exp Dermatol* 16(3): 157–161.
- Nusser Z, Sieghart W, Benke D, Fritschy JM, Somogyi P (1996) Differential synaptic localization of two major gamma-aminobutyric acid type A receptor alpha subunits on hippocampal pyramidal cells. *Proc Natl Acad Sci USA* 93(21): 11939–11944.
- Bowery NG, Enna SJ (2000) γ -Aminobutyric acid(B) receptors: First of the functional metabotropic heterodimers. *J Pharmacol Exp Ther* 292(1): 2–7.
- Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, et al. (2009) Extrasynaptic GABA_{AA} receptors: Form, pharmacology and function. *J Neurosci* 29(41): 12757–12763.
- Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M (2006) Neuronal control of skin function: The skin as a neuroimmunoendocrine organ. *Physiol Rev* 86(4): 1309–1379.
- Eggers ED, Lukasiewicz PD (2006) GABA(A), GABA(C) and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. *J Physiol* 572(Pt 1): 215–225.
- Stell BM, Brickley SG, Tang CY, Farrant M, Mody I (2003) Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABA_{AA} receptors. *Proc Natl Acad Sci USA* 100(24): 14439–14444.
- Maguire J, Mody I (2007) Neurosteroid synthesis-mediated regulation of GABA(A) receptors: Relevance to the ovarian cycle and stress. *J Neurosci* 27(9): 2155–2162.
- Sun MY, Shu HJ, Benz A, Bracamontes J, Akk G, et al. (2018) Chemogenetic isolation reveals synaptic contribution of δ GABA_A receptors in mouse dentate granule neurons. *J Neurosci* 38(38): 8128–8145.
- Philip AB, Brohan J, Goudra B (2025) The role of GABA receptors in anesthesia and sedation: An updated review. *CNS drugs* 39(1): 39–54.
- Antkowiak B, Rudolph U (2016) New insights in the systemic and molecular underpinnings of general anesthetic actions mediated by γ -aminobutyric acid a receptors. *Curr Opin Anesthesiol* 29(4): 447–453.