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Introduction
The term is made up of the prefix “neuro” which refers to neurons, and “degeneration,” 

which indicates to the loss of structure or function of tissues or organs. As a result, 
neurodegeneration refers to any disease that predominantly affects neurons. In practice, 
neurodegenerative illnesses are a broad category of neurological disorders with a wide 
range of clinical and pathological manifestations that impact subsets of neurons in distinct 
functional anatomic systems; they develop for unexplained causes and proceed rapidly [1]. 
Neurodegenerative diseases refer to a group of illnesses caused by the gradual deterioration 
of neurons and nervous system connections that are necessary for movement, coordination, 
strength, sensibility, and cognition. Lots of individuals throughout the world suffer from 
neurodegenerative illnesses. Alzheimer’s disease and other memory disorders, ataxia, 
Huntington’s disease, Parkinson’s disease, motor neuron disease, multiple system atrophy, 
and progressive supranuclear palsy are all examples of neurodegenerative illnesses [2]. 
Biomarkers are the gold standard for diagnosing illness. This is a necessary component of 
the therapeutic and diagnostic criteria. In neurodegenerative illnesses, such quantitative and 
conveniently available methods are desperately needed [3].
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Abstract

Neurodegenerative diseases create a significant risk to people’s health. These age-related disorders are 
growing increasingly widespread as the elderly population has grown in recent years. Neurodegenerative 
diseases include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral 
sclerosis, frontotemporal dementia, and the spinocerebellar ataxias etc. The causes of these diseases vary, 
with some impacting memory and cognition and others harming a person’s ability to move, speak, and 
breathe. Effective medicines are essential, but only if the underlying causes and processes of each illness 
are completely understood. This study gives an outline of biomarkers in neurodegenerative illnesses, 
comprising the ‘core’ AD biomarkers amyloid (A) and tau, as well as various disease-specific and generic 
indicators of neuroaxonal destruction. There are important neurodegenerative pathological biomarkers 
(amyloid, tau, and -synuclein), a disease intensity biomarker (NfL), synaptic function (neurogranin), and 
a number of modern analytical platforms (Simoa and MSp).

Keywords: Neurodegeneration; Biomarkers; Alzheimer’s disease; Amyloid β; Phosphorylated tau; 
Neurofilament light; α-Synuclein; Neurogranin
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Biomarkers in Neurodegeneration
Amyloid and tau

 The finding of Amyloid (A) and Phosphorylated tau (p-tau) 
as major components of extracellular plaques and neurofibrillary 
tangles in Alzheimer’s Disease (AD) led to the development of core 
biomarkers for the disease, with a CSF profile due to a deficiency A42 
levels and elevated levels of total tau (t-tau) and phosphorylated 
tau (p-tau [4]. The decrease in CSF A42 levels is most likely due to 
preferential retention of A42 in A plaques, whereas the rise in CSF 
t-tau and p-tau levels is likely due to enhanced tau secretion and 
phosphorylation from AD-affected neurons [4,5].

Blood Aβ: Novel methods including mass spectrometry 
and ultrasensitive immunoassays have been used in studies to 
produce sensitive blood-based A tests [6-10]. Plasma A42, as 
measured by single molecule array (Simoa) technology, was found 
to be lower in AD patients compared to controls, and the ratio of 
plasma A42/A40 was reduced in amyloid PET positive cases in a 
similar way to CSF, but most studies found more overlap between 
A-positive and A-negative patients [11,12]. In contrast to Simoa, 
two recent articles using MagQu’s Immunomagnetic Reduction 
(IMR) technology have shown a rise in plasma A42 in Alzheimer’s 
patients compared to controls, with a negative correlation with CSF 
A42 [13,14]. Significant heterogeneity across studies persists, with 
various possible confounders, such as inter-assay variations and 
putative peripheral an expression, leading to poor concordance and 
demanding more validation studies to demonstrate the relevance of 
plasma an in-AD diagnosis [15].

CSF Aβ: The most well validated biomarkers in neurodegeneration 
are CSF A42 [16,17]. In post-mortem investigations, low CSF levels 
are closely linked to cortical amyloid plaque burden in the neocortex 
and hippocampus, as well as cortical A deposition evaluated by PET 
[18,19]. In comparison to A42 alone, the CSF A42/A40 peptide ratio 
has recently been found to enhance prediction of cortical amyloid 
deposition and discrimination between Alzheimer’s disease and 
other dementias. This is likely due to normalizing inter-individual 
variability in A and release into CSF [20,21]. Various studies looked 
into the significance of alternatively cleaved A peptides in addition 
to A42. A43, for example, has diagnostic performance equivalent to 
CSF A42 [22]. The shorter A38 peptide is another A peptide, with 
evidence indicating a link between CSF A38 levels and amyloid PET 
[16,23].

CSF tau: T-tau and p-tau concentrations in the CSF are 
consistently higher in AD [16]. Tau pathology is more strongly 
linked to cognitive decline than amyloid pathology, with very 
high CSF t-tau and p-tau levels linked to poorer clinical outcomes 
[21,22]. While t-tau and p-tau levels broadly indicate disease 
severity, they have no correlation with the severity of tau 
pathology as evaluated by PET or in a post-mortem examination 
[23,24]. The fact that tau proteins may exist in various fragments 
and have varied phosphorylation patterns has been the focus of 
recent study, with the expectation that some of them might be 
disease-specific and represent the underlying pathophysiological 

processes. In one study, the N-terminal tau fragment truncated at 
224 amino acids (N-224) localized with neurofibrillary tangles in 
brain extracts and showed significantly higher levels in CSF from 
patients with Alzheimer’s disease compared to controls, with 
higher baseline levels predicting steeper cognitive decline [25]. Tau 
N-368 has recently been discovered to be considerably higher in 
the CSF of Alzheimer’s patients, with a tau N-368 to total tau ratio 
demonstrating a strong negative connection with tau PET [26]. 
Hyper phosphorylation of several CSF tau sites was seen in contrast 
to healthy controls, indicating that AD pathology has a considerable 
impact on phosphorylation patterns. Furthermore, in AD CSF, a 
unique phosphorylation site (T153) has been discovered, which 
is lacking in non-AD CSF [27]. Many neurodegenerative diseases, 
including primary tauopathies like Frontotemporal Dementia 
(FTD) and Progressive Supranuclear Palsy (PSP), do not show 
elevated tau levels, including specific phosphorylated epitopes 
(P-tau181, P-tau231, and P-tau199) and N-terminal tau fragments 
truncated at 224 [25-30]. The increased t-tau and p-tau levels 
seen in AD could be due to active production and secretion from 
neurons in response to pathology, rather than a direct reflection 
of a neurodegenerative process, according to a recent study by 
Sato et al. [31] using the Stable Isotope Labelling Method (SILK) to 
investigate tau metabolism [31].

Blood tau: Plasma t-tau levels were also shown to be higher 
in AD, albeit this was not linked to CSF [32-34]. In recent research 
by Palmqvist et al. [35], promising findings were found for plasma 
p-tau, which was quantified utilizing a sensitive immunoassay with 
electrochemical luminescence detection and showed substantial 
relationship with tau PET as well as high concordance with 
CSF p-tau. Several substantial replication studies with strong 
correlations between CSF p-tau and amyloid PET data were 
presented at the Alzheimer’s Association International Conference 
2019 (AAIC), however they have yet to be published. To summarize, 
while elevated CSF tau levels are a well-established hallmark of 
Alzheimer’s disease, further research into tau biology, particularly 
its processing, secretion, and aggregation, is needed to completely 
comprehend tau’s significance as an AD biomarker. Additional 
study on tau pathology biomarkers in other tauopathies, such as 
PSP, is also required.

Neurofilament light
NFL (neurofilament light) is a kind of intermediate filament 

found in the cytoplasm of axons and is involved in axonal 
homeostasis and synaptic transmission [36]. As seen in amateur 
boxers and ice hockey players [37,38], NfL concentrations rise 
dynamically in response to concussion. Because it corresponds with 
neuroaxonal damage in a wide spectrum of neurological illnesses, 
NfL has also been employed as a biomarker of disease severity [39]. 
Because the concentrations of CSF and serum NfL are significantly 
associated, they will be addressed jointly [40,41].

CSF and blood NfL: The degree of whole-brain shrinkage 
identified on Magnetic Resonance Imaging (MRI) and cognition are 
connected to serum NfL concentration, which rises a decade before 
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symptoms manifest in familial AD [42-44]. High plasma NfL levels 
separate AD, MCI, and healthy controls in sporadic AD, with larger 
values in MCI participants linked with faster brain shrinkage [45]. 
Plasma NfL is also linked to the degree of neurofilament staining 
and post-mortem Break staging [46]. Longitudinal variations 
in plasma NfL are positively correlated with changes in other 
neurodegenerative indicators, such as brain atrophy and cognition 
[47]. In various types of neurodegenerations, NfL is a valuable 
biomarker. CSF NfL levels have been found to differ between AD 
and other kinds of dementia; for example, recent post-mortem 
research found that FTD patients have much greater CSF NfL levels 
than AD patients. Idiopathic Parkinson’s Disease (PD) and atypical 
parkinsonism, which are clinically indistinguishable at the time of 
testing, can be distinguished using serum NfL [48-50]. Plasma NfL 
levels are closely linked to MRI brain volume and clinical severity in 
Huntington’s Disease (HD) and may be a valuable outcome metric 
in tracking clinical response to disease-modifying therapy [51]. 
Other neurodegenerative illnesses with high levels of NfL include 
Amyotrophic Lateral Sclerosis (ALS), HIV-Associated Dementia 
(HAD), and Creutzfeldt-Jakob Disease (CJD) [52]. In addition to 
highly high NfL levels, CJD patients have a multi-fold rise in the 
concentration of a variety of additional CSF indicators, such as total 
tau, alpha-synuclein, and neurogranin [53-55]. Multiple Sclerosis 
(MS), a prevalent neuroinflammatory Central Nervous System 
(CNS) condition, is a good illustration of how NfL might be used 
as a biomarker outside of neurodegeneration. NfL levels are much 
higher in MS patients than in healthy controls, and they are linked 
to the severity of disease activity revealed on MRI [56,57]. Patients 
with MS who begin disease-modifying medication or transition 
from first line to a higher-potency treatment, on the other hand, 
observe a decrease in NfL levels [58]. The findings suggest that NfL 
in CSF, serum, and plasma is a sensitive but non-specific marker of 
disease activity in the CNS and Peripheral Nervous System (PNS), 
with the added benefit of being able to measure disease activity and 
severity, as seen in MS and HD, as well as treatment response, as 
seen in MS and Spinal Muscular Atrophy (SMA) [59,60].

α-Synuclein: α-Synuclein is a cytoplasmic protein that has 
been linked to synaptic transmission and intracellular trafficking 
[61]. Misfolding and aggregation of α-synuclein into oligomers and 
fibrils, along with prion-like seeding throughout the CNS, is thought 
to be central to the pathogenesis of a number of neurodegenerative 
disorders, including Parkinson’s Disease (PD), Multiple System 
Atrophy (MSA), and Multiple System Atrophy (MSA) [61,62]. α 
-synuclein has been found in a variety of bio fluids, including CSF, 
serum, saliva, and tears [63].

CSF α-synuclein: Total α-synuclein is the well-studied protein 
in CSF, with a meta-analysis finding that levels in synucleinopathies 
patients are lower than in healthy controls [64]. However, the 
results are neither sensitive nor specific enough to allow the 
biomarker to be used for diagnostic purposes, with significant 
inter-subject and inter-laboratory variation, which is complicated 
by the fact that blood contamination of the CSF can significantly 
increase total α-synuclein concentration [65]. Furthermore, 

one study found that PD patients with a more aggressive clinical 
course have a greater baseline α-synuclein concentration, further 
confusing the interpretation [66]. CSF-synuclein levels were 
shown to be higher in AD than in PD, with exceedingly high levels 
observed in CJD [67]. More recently, investigations utilizing real-
time quaking-induced conversion assay (RT-QuiC) to measure 
a degree of protein aggregation reliably differentiated between 
neuropathological verified cases of PD or LBD and controls, with 
92-95 percent sensitivity and 100 percent specificity [68,69]. One 
research found considerable-synuclein aggregation in two control 
persons who later developed Parkinson’s disease years after the 
sample was taken [70]. In addition to total CSF-synuclein, levels of 
CSF oligomeric and phosphorylated-synuclein have been reported 
to be higher in PD when compared to controls, which needs to be 
confirmed [71].

Blood α-synuclein: Outside of the CNS, the protein is 
extensively produced, with red blood cells being a major source 
of -synuclein in the blood and a possible source of contamination 
[63,72]. synuclein levels in whole blood, plasma, and serum of 
Parkinson’s disease patients have shown mixed findings, limiting 
its value as a diagnostic biomarker [71]. Studies evaluating 
oligomeric or phosphorylated versions of the protein in the serum 
and red blood cells, comparable to CSF, have demonstrated that 
they are consistently increased in PD patients compared to controls 
[71,73]. Due to various possible confounding variables, -synuclein 
is currently one of the most difficult biomarkers to interpret. To 
establish it as a therapeutically effective biomarker, more research 
into aggregation tests, as well as oligomeric and Lewy body-
enriched forms of the protein, is required.

Neurogranin
Synaptic dysfunction has been found to occur in the early stages 

of Alzheimer’s disease, prior to the development of overt neuronal 
death [74]. Neurogranin (Ng), a calmodulin-binding postsynaptic 
protein, is abundant in memory-processing brain areas including 
the amygdala and hippocampus, where it plays a critical role in 
long-term potentiation [75].

CSF neurogranin: Multiple studies have demonstrated that 
Ng levels are greater in AD and MCI patients compared to controls, 
and that higher levels are associated with a quicker degree of 
cognitive impairment, a decrease in cortical glucose metabolism, 
and hippocampus volume loss [76]. CSF Ng increase appears to be 
unique to AD and has not been observed in other neurodegenerative 
illnesses outside CJD [53,77,78]. The ratio of peptide-to-total full-
length Ng was greater in patients with AD compared to controls in 
recent research investigating post-mortem parietal and temporal 
brain tissues, suggesting enhanced processing of Ng into peptides 
[79]. As a result, the processes driving the elevated CSF Ng in AD 
might be comparable to those underlying the disease’s increased 
CSF tau processing and release [31].

Blood neurogranin: Few studies have looked at plasma Ng 
levels, and none have found a significant difference between AD 
patients and healthy controls; however, pilot studies have found 
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that the concentration of Ng in neuron-derived exosomes is lower 
in AD than in controls, and that this is linked to the progression from 
MCI to AD [80,81]. Overall, the data suggests that Ng is a promising 
biomarker for early synaptic impairment in Alzheimer’s disease, 
with predictive efficacy in healthy controls and MCI patients in a 
surprisingly AD-specific way.

Other Biomarker Candidates
 The cytoplasmic buildup of TAR DNA-binding protein 43 (TDP-

43) is a hallmark of ALS and FTD [82]. TDP-43 pathology is seen 
in 20-50% of Alzheimer’s disease patients, although the protein 
is difficult to detect in bodily fluids, and CSF TDP-43 appears to 
be largely sourced from blood [83]. In one research, CSF TDP-43 
was shown to be higher in people with ALS and FTD compared to 
healthy controls, but there was a lot of overlap between the two 
groups [84]. In another study, plasma TDP-43 levels were shown 
to be higher in a subset of FTD and AD patients (46 percent and 
22 percent, respectively) when compared to controls [85]. There 
are currently no fluid-based tests available that are selective for 
pathogenic versions of the protein.

 Inflammation has a role in the etiology of Alzheimer’s disease, 
and proteins implicated in the inflammatory response, such 
as TREM2 and YKL-40 (also known as chitinase-3-like protein 
1), might be employed as possible AD biomarkers. TREM2 is 
expressed in microglia, and its soluble form is increased in the CSF 
of individuals with MCI and Alzheimer’s disease [86-90]. YKL-40 
is expressed in astrocytes, and its presence in CSF is associated 
with the development of BACE1 (-Site APP-cleaving enzyme 1) is 
an endoprotease involved in the processing of amyloid precursor 
protein (APP). BACE1 levels in the CSF have been found to be greater 
in MCI and AD patients than in healthy controls, especially when 
the APOE 4 allele is present [90,91]. Plasma BACE1 levels were able 
to predict future MCI to AD progression in another investigation. 
MCI to AD [88]. Higher levels have also been linked to the severity 
of tau disease [89]. BACE1 (-Site APP-cleaving enzyme 1) is an end 
protease that plays an important role in the processing of amyloid 
precursor protein (APP). BACE1 levels in the CSF have been shown 
to be greater in MCI and AD patients than in healthy controls, 
particularly when the APOE 4 allele is present [90,91]. Plasma 
BACE1 levels were used in another investigation to predict future 
MCI progression in AD patients [92]. Other synaptic proteins, such 
as synaptotagmin-1 (SYT-1), synaptosomal-associated protein-25 
(SNAP-25), and growth-associated protein-43 (GAP-43), have 
been found in the CSF of Alzheimer’s disease patients and are a 
promising group of biomarkers, highlighting the importance of 
synaptic dysregulation in the disease [93-96].

Future Directions
As we optimistically get closer to a day when disease-modifying 

medicines are available, accurate biomarkers will be required 
to improve diagnostic accuracy, enabling for earlier diagnosis, 
better participant selection, and disease activity and treatment 
impact monitoring. Improving pre-analytical and analytical 

standardization, identifying new components of neurodegenerative 
etiology, and developing less invasive fluid biomarkers for screening 
and monitoring are all future challenges [3].
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