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Introduction
Knee pain is a common ailment among individuals of all ages. It is also an irreversible 

condition that creates problems and has a bearing on our lives and future. The most prevalent 
joint ailment is knee osteoarthritis, and the second is knee osteoporosis, which can proceed 
without symptoms until a bone is fractured. The latter starts with osteopenia, which is a 
decrease of bone mass or mineral density, and progresses to osteoporosis. Osteoporosis is 
diagnosed when both bone mineral density and bone mass decline, causing structural defects 
in bone tissue. The normal bone involves the formation of new bone and the elimination of 
existing bone. Osteoporosis produces asymmetry in this process, resulting in faster bone loss 
than bone creation. Its symptoms are rarely visible, yet it causes fractures in many people, 
resulting in pain, disability, and loss of independence. As a result, detecting both at an early 
stage is critical for improving treatment outcomes. These two illnesses are the current knee 
problems diagnostic systems, which require time and competent physicians to diagnose knee 
diseases and interpret X-ray pictures in order to avert further bone mass loss and provide 
appropriate medical care. Figure 1 depicts an X-ray picture from three different cases: normal, 
osteopenia, and osteoporosis knee.

Figure 1: X-ray images for normal, osteopenia and osteoporosis knee.
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Abstract
Osteoporosis is a disorder in which the bones deteriorate and become brittle. It is commonly referred to as 
a “silent disease” since symptoms do not appear until a fracture occurs. Normally, bones create new bone 
and remove old bone, but osteoporosis upsets this equilibrium, resulting in greater bone loss than bone 
creation. Osteoporosis symptoms are subtle, yet it frequently leads to fractures, causing pain, disability, 
and loss of independence. The existing procedures for diagnosing osteoporosis are time-consuming. Early 
identification is critical for successful care and lowering the risk of fracture. Over the last few decades, 
deep learning has been more prominent in the field of picture analysis. The findings from the previous 
research indicate that employing machine- learning models may assist clinicians in early detection of 
Osteoporosis, thereby mitigating the risk of fractures.
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Osteoporosis can affect several aspects of the human body, 
including the teeth, hip, spine, hand, and knee. As a result, 
automated methods can detect specific changes in bone density 
and structure that may indicate osteoporosis. Several studies have 
been recommended for osteoporosis in Tooth [1], Hip [2], and 
Spine [3], but few have been addressed to the knee. Osteoporosis 
occurs despite the fact that the knee is the most stressed joint since 
it carries the body’s weight and is responsible for mobility. With an 
aging population, the occurrence of osteoporotic fractures around 
the knee grows, particularly among women. In the identification 
of osteoporosis, X-ray scans have been used extensively. It is the 
most used imaging tool among the medical community to discover 
bone diseases because it takes images of whole body. X-ray 
images greatly help in fracture diagnosis, dislocation of joints, and 
detecting changes in the bone density and architecture. Although 
it is the main tool for the doctors to diagnose Osteoporosis, it 
does not always easily detect Osteoporosis unless the doctor is 
professional. There are some researches that dedicated their work 
to Osteoporosis detection [4-14].

Related Work using Machine Learning
Previous research into the landscape of AI applications in 

medical imaging has mostly focused on picture identification, 
feature extraction, and diagnostic help. In this part, we will provide 
a quick overview of the most current work in these two disciplines. 
Machine learning is useful in understanding the diagnosis and 
treatment of osteoporosis because its algorithms can examine 
big datasets to uncover trends in how people respond to different 
therapies. It can also track health changes over time and extract 
important information from electronic health records using 
Natural Language Processing (NLP) techniques, allowing for a more 
unified examination of patient histories. Convolutional Neural 
Network (CNN) models have grown in popularity [15,16] due to 
their revolutionary success in diagnosing a variety of diseases from 
images, as well as many other useful applications such as brain 
tumor detection and segmentation [17], COVID detection [18], 

cancer detection [19], human activity identification [20], age and 
face detection [21], and many more.

Wani A et al. [10] used transfer learning based on convolution 
neural networks to diagnose osteoporosis in knee X-rays, utilizing 
a multiclass dataset from Mendeley data [22]. The four models 
utilized were AlexNet, VGG-16, ResNet, and VGG-19, with accuracies 
of 91%, 86.30, 86.30%, and 84.20%, respectively. Kumar et al. [11] 
used a fuzzy rank-based ensemble model to accurately diagnose 
knee osteoporosis, which was created with three models: Inception 
v3, Xception, and ResNet 18. Knee X-ray images were analyzed 
using a multiclass dataset from Mendeley data [22]. The models’ 
accuracies were: Inception v3 (89.8%), Exception (90.9%), and 
ResNet 18 (91.4%). Abubakar et al. [14] applied transfer learning 
models for osteoporosis classification on knee radiographs of RGB 
and grayscale pictures utilizing a binary knee X-ray image dataset 
from Kaggle [23,24]. Two models were used: GoogleNet with 90.0% 
accuracy and VGG-16 with 87% accuracy.

Yang et al. [25] used deep learning to identify and categorize 
knee disorders (osteoporosis and osteoarthritis) based on X-ray 
pictures. Knee X-ray images were analyzed using a binary-classes 
dataset from Kaggle et al. [24,26,27]. They tested three models: 
Custom CNN (77% accuracy), Late-Fusion (71% accuracy), and 
VGG-16 (82% accuracy). Dodamani D et al. [9] used a binary 
dataset from Zydus Hospital [28,29] for spine, hand, leg, knee, and 
X-ray pictures to classify osteoporosis using transfer learning. Five 
models were trained: VGG-16, VGG-19, DenseNet-121, ResNet-50, 
and Inception V3, with reported accuracies of 78%, 86%, 93%, 
89%, and 90%, respectively. An overview of prior X-ray-based knee 
osteoporosis diagnoses using deep learning models is provided 
below, along with their accuracy in Table 1. As a result of these 
investigations, which evaluated the use of deep learning models for 
osteoporosis detection using knee X-ray pictures, we discovered 
that the performance (measured as model accuracy) is low. More 
improved models are needed to improve the diagnostic accuracy of 
knee osteoporosis [30-42].

Table 1: Previous work for knee osteoporosis.

Author Bone Type Image Type Classes Dataset Classifier Reported Model 
Accuracy

Wani & Arora [10] Knee X-ray Multiclass
Dataset from 

Mendeley Data 
[22]

AlexNet 91%

VGG-16 86.30%

ResNet 86.30%

VGG-19 84.20%

Kumar et al. [11] Knee X-ray Multiclass
Dataset from 

Mendeley Data 
[22]

Inception v3 89.80%

Xception 90.90%

ResNet 18 91.40%

Abubakar et al. 
[14] Knee X-ray Binary Dataset from 

Kaggle [24]
GoogleNet 90%

VGG-16 87%

Yang [25] Knee X-ray Binary Dataset from 
Kaggle [24]

Custom CNN 77%

Late-Fusion 71%

VGG-16 82%
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Dodamani & Danti 
[9]

Spine, Hand, Leg, 
Knee X-ray Binary

Zydus Hospital 
Dataset, Dahod, 

Gujarat.

VGG-16 78%

VGG-19 86%

DenseNet-121 93%

ResNet-50 89%

Inception V3 90%

Classification Metrics
The subsequent deep learning classification metrics were 

employed to gain a deeper insight into the models’ performance 
across the two different image formats.
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Where:

i.	 True Positives (TP): The number of instances that were 
correctly predicted as positive by the model when they are 
actually positive.

ii.	 True Negatives (TN): The number of instances that were 
correctly predicted as negative by the model when they are 
actually negative.

iii.	 False Positives (FP): The number of instances that were 
incorrectly predicted as positive by the model when they are 
actually negative.

iv.	 False Negatives (FN): The number of instances that were 
incorrectly predicted as negative by the model when they are 
actually positive.
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