
Stochastic Distribution Control 
Theory-Its Potential Application in 

Risk Management in Financial Systems
Hong Wang*
Oak Ridge National Laboratory, Oak Ridge, USA

Introduction
In finance and accounting systems, evaluation of control of risk has always been a subject of 

study [2,3] with reference therein. Risk analysis and management require a good understanding 
of the quantitative relationships between the risk and the key factors that influence the 
concerned risk. It is a dynamic stochastic system where the inputs are the identified factors 
that affect the risk whilst the output is the risk represented as a random process. For example, 
value at risk (VaR) is a random process that can be used to predict the maximum possible 
losses over a specific time duration [2]. The factors that affect VaR are generally the period, 
confidence level and the size of possible losses which can be affected by random disturbances. 
Indeed, since these factors can be of random nature, the system dynamics shall be represented 
by stochastic differential equations such as Ito stochastic differential equations or time-series 
models in discretized-time domain format that are subjected to random disturbances. This 
means that the management (or the control) of the risk would require the following:

1)	 Development of risk propagation models that link the risk with the key inputs.

2)	 Optimize a subset of inputs in their capacity as decision or control variables so that the 
risk can be minimized in the concerns precision zone at high confidence level.

The first requires a good model to be developed and the second aspect is basically the 
objective of risk management or control. As discussed before, the risk models are either of 
the format as stochastic differential equations or the time series models subjected to random 
disturbances. These models reveal how the risk, as a random process calculated for example 
as VaR, is affected by various factors. However, these existing models are mostly assumed to 
be subjected to Gaussian inputs and they are limited when dealing with non-Gaussian cases 
widely seen in practice. In this review, we will discuss potential applications of stochastic 
distribution control theory to the risk analysis and management. For this purpose, in the next 
section we will brief introduce the concept of stochastic distribution control. In particular we 
will explore how such a theory can be applied to deal with non-Gaussian risk management 
systems in general.
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Abstract

Stochastic Distribution Control (SDC) theory [1], originated by the author in 1996, aims at developing 
modeling and control strategies for dynamic and non-Gaussian stochastic systems by controlling the 
shape of the probability density functions of some concerned variables and parameters in stochastic 
systems. It generalizes the capability of standard stochastic differential equations and can therefore be 
applied to generic non-Gaussian systems. Since it was established in 1996, it has found a wide spectrum 
of applications in non-Gaussian stochastic system control, data mining, filtering and optimization for 
uncertain systems. In this short opinion article, discussions will be made on potential applications of SDC 
theory to financial systems in terms of risk analysis and management.
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Discussion
Stochastic distribution control

Given a stochastic system, its model is defined as a set of 
mathematic equations that represent the relationship between the 
inputs and outputs. In risk management, the risk under consideration 
would be the output whilst the inputs are the factors that affect the 
estimation and management (and control) of the risk. In general 
risk is measured as an event probability as it is normally affected 
by some random disturbances and noises. Since the probability 
density function is a comprehensive measure of the characteristics 
of any random variable, the objective of stochastic distribution 
control is to find out a set of inputs so that the output probability 
density functions can be made to follow a targeted distribution 
shape. The theory of SDC was originated in 1996 by the author 
[1,4,5]. Since then, numerous modeling and control strategies have 
been developed and applied to many engineering systems. Indeed, 
it has been shown that the SDC theory can effectively deal with non-
Gaussian systems and is therefore much generic than traditional 
stochastic system theory in which only mean and variance of the 
system output are controlled or managed. In terms of the modeling 
in SDC theory, a decoupled expression is often used based upon 
the universal approximation properties of neural networks such 
as B-splines neural networks [1], where the output PDF of the 
system is approximated and learned using a neural network and 
the system dynamics is represented as a set of dynamic equations 
(often differential equations) that links the inputs to the weights 
of the neural network that approximates the output PDF of the 
concerned system. When the output PDF cannot be measured, a 
generical input-output model is obtained first, and the relationship 
between the output PDF and the inputs is then formulated using 
the well-known chain formula in probability theory. Using such a 
set of PDF models one can design and manipulate inputs so that the 
output PDF can be controlled. In the next section, we will describe 
how risk management can be well handled by SDC theory as a 
potential direction of research in the future.

Risk management using SDC

Denote 𝑟(𝑘) as a value of risk at a sample-time instant 𝑘 and 
assume that it is affected by a set of factors denoted by 𝑢(𝑘) ∈ 𝑅𝑛 as 
an n-dimensional vector, then in general one can use the following 
model, that links the inputs to the output (i.e., VaR), to represent 
the system.

( 1) ( ( ),..., ( ), ( ), ( ))r k f r k r k m u k kω+ = −      (1)

where 𝑓(… ) is a  generic function that can be learned using 
historical data of the concerned system, 𝑚 is an integer that defines 
the dynamic order of the system, and 𝜔(𝑘) is a random disturbance 
process that makes the VaR a random process as well. With this 
model in mind, the risk analysis would mean to find out function 𝑓(… 
) and then use inputs with this function to calculate VaR for future 
discrete time instants say 𝑟(𝑘 + 1) when the current time instant 
is 𝑘. As it is the author’s believe that in general VaR is a  random 
variable, one can denote the probability density function of the 
value at risk 𝑟(𝑘 + 1) as 𝛾(𝑥), with 𝑥  ∈ [0, +∞) as the index variable 

in the definition interval [0, +∞), then this PDF would be generally 
a conditional PDF with respect to the past observed VaRs and the 
relevant factors 𝑢(𝑘) at the current sample instant 𝑘. This means 
that the PDF of VAR at sample instant 𝑘 + 1   can be expressed as 

( | ( ),..., ( ), ( ))x r k r k m u kγ − . This means that the probability of the 
value at risk larger than a given threshold 𝜋 > 0 at sample instant 𝑘 
can be expressed as a conditional probability of the following form.

 
{ ( 1) } ( | ( ),..., ( ), ( ))P r k x r k r k m u k dx

γ

π γ
+∞

+ > = −∫
        (2)

In this scenarios, it has been assumed that the past observed 
values at risk are available for the calculation and justification. As 
stated in section 1, the relationship between function (…) and PDF 
𝛾(𝑥) can be obtained using the following well-known chain rule in 
the probability theory. 

1 1( ( ), )( | ( ),..., ( ), ( )) ( ( ( ), )) | |df k xx r k r k m u k f k x
dx
ϕγ γω ϕ− −

− =    (3)

where it has been denoted that 𝜑(𝑘) = [𝑟(𝑘), …,  𝑟(𝑘 − 𝑚)  𝑢(𝑘)]
𝑇 and 𝛾𝜔(𝑥) is the probability density function of the random 
disturbance process 𝜔(𝑘). 𝑓-1(𝜑(𝑘), 𝑥) is an inverse map of 
𝑓(𝜑(𝑘), 𝜔(𝑘)) with respect to the entry position of 𝜔(𝑘) under the 
assumption that 𝑓(𝜑(𝑘), 𝜔(𝑘)) is monotonic with respect to 𝜔(𝑘) 
[4]. It can be seen from equation (2) that the risk is measured as a 
probability of its value larger than a certain number or threshold. In 
this context, equations (1) and (2) present a generic description of 
risk analysis and management. Indeed, a good management of risk 
would be to have its VaR’s PDF as narrow and as left as possible in 
its PDF plot as shown in the following figure. In the above figure, the 
good PDF of VaR means that its mean value is small and its variance 
(entropy) is small - showing that the uncertainties embedded in 
calculating VaR is small. In an extreme case the PDF of a VaR is 
an impulse function centered at zero, then the risk is of course 
zero and the system concerned does not any risk in its operation. 
This observation says that in terms of risk management, a good 
management strategy is to control the shape of 𝛾(𝑥|𝜑(𝑘)) so that 
it approaches an impulse PDF centered at zero. This requires the 
solution of the following optimal risk management strategies.

 2

( )
0

min [ ( ) ( | ( )]
u k

J y x k dxδ γ ϕ
+∞

= −∫        (4)

where 𝛿(𝑥) is the impulse defined as
0( ) {0

xx Otherwsieδ +∞ ==          (5)

 Equation (4) means that to achieve the lowest possible VaR at 
discrete sample instant 𝑘 +  1, we need to make sure that the PDF 
𝛾(𝑥|𝜑(𝑘) is made as close as possible to a  special PDF shape defined 
by the impulse function. Once the optimization problem in equation 
(4) is solved, a good PDF of VaR as shown in Figure 1 can be readily 
obtained – leading to an optimized risk management strategy with 
high confidence. Indeed, to focus on the high confidence effect, one 
can simply consider to minimize the entropy of VaR. This can be 
realized by solving the following optimization problem.

( )
0 0

min ( | ( )) log[ ( | ( )] ( | ( ))
u k

J x k x k dx xy x k dxγ ϕ γ ϕ ϕ
+∞ +∞

= − +∫ ∫       (6)
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Figure 1: The PDF of VaR at sample instant 𝑘 + 1([4]).

where the first term in equation (6) is the entropy of VaR and 
the second term is its mean value. Since the entropy is a measure 
of randomness in VaR, its minimization would be to obtain the high 
confidence estimate of VaR, whilst the mean minimization indicates 
a low risk effect by using optimized decision inputs (factors).

Conclusion
In the author’s opinion, risk analysis and management are 

in line with the scope of stochastic distribution control theory, 
where the modeling of VaR in the structure of equation (1) 
needs to be performed first in order to reveal the quantitative 
relationship between VaR and the input factors. This is a modeling 

exercise where data driven modeling and neural network based 
approaches can be used. Once such a VaR model is obtained, the 
risk management would be to control the inputs so that the PDF 
of the VaR can be shaped to be as close as possible to an impulse 
PDF defined in equation (5). As such, the concerned risk can be 
minimized with high confidence. In conclusion, one can use the 
comprehensive tools developed in stochastic distribution control 
to perform effective risk analysis and management. These would 
lead to future directions of research in this area, and further 
studies on the enhancement of robustness of the risk modeling and 
management strategies will be expected.
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