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Abstract

Type 1 Diabetes Mellitus (T1DM) requires strict carbohydrate counting to adjust insulin doses
and maintain glycemic control. Manual carbohydrate estimation is time-consuming and prone
to human error, creating a need for automated tools. This study presents the development of
ImageCarb, an intelligent application implemented in MATLAB that automatically segments food
items from digital images and estimates carbohydrate content. Images were standardized with
a white round plate, single food type per plate and light background to ensure reliability. Two
segmentation approaches were implemented: A manual Region of Interest (ROI) method and
a fully automated segmentation method using colour space conversion (RGB to HSV and LAB),
adaptive thresholding and morphological operations. Nutritional data were integrated from
standardized databases photographic manual for food quantification [1]. Tests were performed
with representative Portuguese foods, including carrots, courgettes, red cabbage, peas, beans, ham
and cold cuts. Results demonstrated that the automated method achieved a discrepancy of only
2-3% compared with the manual method, validating its accuracy and robustness. Carbohydrate
estimates were consistent with reference nutritional tables and the system successfully provided
macronutrient breakdown (carbohydrates, proteins, lipids). The ImageCarb application thus
offers a user-friendly tool to support carbohydrate counting in T1DM patients, with potential to
improve glycemia management and quality of life. Future directions include expanding the system
to complex mixed meals, integrating real-time continuous glucose monitoring and implementing a
mobile application interface.

Keywords: Type 1 diabetes; Carbohydrate counting; Digital image processing; Food recognition

Abbreviations: ADA: American Diabetes Association; CHO: Carbohydrates; GUI: Graphical User
Interface; HSV: Hue Saturation Value; LAB: Lightness, A (greenness-redness) and B (blueness-
yellowness); TIDM: Type 1 Diabetes Mellitus; RGB: R (Red), G (Green) and B (Blue), ROI: Region
of Interest

Introduction

Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune condition in which pancreatic
B-cells are destroyed, resulting in little or no endogenous insulin production [2]. Without
this hormone, the body cannot effectively transport glucose into cells for energy, leading to
hyperglycemia and if uncontrolled, serious complications such as cardiovascular disease,
neuropathy, retinopathy and nephropathy [3]. To prevent these outcomes, people with T1DM
must administer exogenous insulin and closely monitor their blood glucose levels daily [4,5].
Carbohydrate (CHO) intake is the primary dietary factor influencing postprandial glycemia.
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Accurate CHO counting allows patients to match insulin doses to
the amount of CHO consumed, supporting better glycemia control
and reducing the risk of both acute and long-term complications [3].
However, manual CHO estimation can be cognitively demanding,
tiring and error-prone, particularly when assessing portion sizes
and complex meals. For this reason, reliable methods and digital
tools that simplify CHO estimation have become a priority in
diabetes management and patient education. The present study
makes use of the photographic manual for food quantification
[1] as the reference nutritional database to ensure accurate and
standardized macronutrient calculations.

Several digital solutions support nutritional monitoring,
including applications such as MyFitnessPal, Carb Manager and
SnapCalorie, which rely on databases and image recognition [6-
8]. However, these tools are not specifically designed for T1DM
and often lack insulin dose calculation support. More specialized
apps, such as CHO, integrate insulin calculators but remain limited
in database flexibility and integration with continuous glucose
monitoring [9]. In addition, although some mobile applications
and digital interventions have been developed to encourage
adherence to the Mediterranean diet or to include Mediterranean-
style recipes [10-13], they are not specifically designed for CHO
counting, nor do they integrate insulin management functionalities.
Importantly, no tools have been identified that combine automatic
image-based CHO estimation with adaptation to Portuguese and
Mediterranean dietary habits. In this context, the ImageCarb project
addresses a clear unmet need by providing a culturally adapted,
automatic, image-based CHO counting tool specifically targeted to
support T1DM patients. This article describes the methodology,
implementation and evaluation of ImageCarb, highlighting its
clinical relevance for T1IDM management. Ultimately, the aim of
this work is to ease the daily life of individuals living with T1IDM by
providing an intuitive and user-friendly tool that enables precise
CHO counting through the digital image processing of foods.

Background: Type 1 Diabetes and Carbohydrate
Counting

ImageCarb represents an added value for people with T1DM,
offering a fast and simple approach to CHO counting based only on

images of meals. By reducing the effort and uncertainty involved
in manual CHO estimation, the application supports patients in
achieving more precise insulin control. An additional advantage is
the fact that this tool was developed in Portugal, being culturally
adapted to Portuguese dietary habits and Mediterranean cuisine,
which enhances its relevance for local users. TIDM is a medical
condition in which the body produces little or no insulin. Insulin
is the hormone responsible for transporting glucose from the
bloodstream into the body’s cells, where it can be used as energy.
When glucose is not properly absorbed, it accumulates in the blood,
causing hyperglycemia. Persistent hyperglycemia is associated with
damage to blood vessels, nerves, eyes, kidneys and other organs
[3]. For people with T1DM, this means that continuous monitoring
of glucose levels and strict control of insulin administration are
part of their daily routine. CHO are the main dietary component
influencing postprandial blood glucose levels. Following ingestion,
CHO are metabolized to glucose, which becomes the primary source
of immediate energy.

Simple CHO, such as sugar and fruit juice, are rapidly absorbed
and cause sharp increases in glycemia, whereas complex CHO, such
as whole grains and legumes, are digested more slowly, releasing
glucose gradually and helping to stabilize glycemic levels [9].
Fiber also plays an important role in slowing glucose absorption,
supporting improved metabolic control [3]. Table 1 (adapted
from American Diabetes Association (ADA), 2023) illustrates the
reference values for blood glucose levels in different conditions,
showing the ranges for individuals without diabetes, with T1DM,
as well as thresholds for hypoglycemia and hyperglycemia in
fasting and postprandial states. These benchmarks highlight the
importance of accurately matching CHO intake with insulin dosing
to prevent both hypo-and hyperglycemic events. Nutritional
education is therefore a cornerstone of T1DM management.
Patients must learn to count CHO, understand the glycemic index
and glycemic loads of foods and adjust insulin doses accordingly. In
Portugal, where Mediterranean diet patterns dominate, integrating
these concepts with local food habits is particularly important. By
automating CHO counting and adapting the system to Portuguese
foods, ImageCarb contributes not only to metabolic control but also
to patient empowerment, education and quality of life.

Table 1: Reference values for blood glucose levels based on ADA, 2023.

Status No Diabetes (mg/dL) Type1 Dlabet(;eE)Mellltus (mg/ Hypoglycemia (mg/dL) Hyperglycemia (mg/dL)
Fasting (8 h(.)urs without 70-99 80-130 <70 ~130
eating)
2 hours after meal <140 <180 <70 >180

Materials and Methods
Image dataset

Images were standardized to minimize variability: A white,
round plate placed on a light background, containing only one type
of food per image. This standardization reduced segmentation
errors and improved reproducibility. Nutritional information

and reference values for the foods analyzed were obtained from
the photographic manual for food quantification [1]. One of the
key reasons for selecting this database is that ImageCarb was
developed specifically for the Portuguese context, where dietary
habits are strongly influenced by the Mediterranean diet. Using a
nutritional database rooted in Mediterranean food culture ensures
that the system is adapted to local eating patterns and includes
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representative foods frequently consumed in Portugal, increasing using a luminance method to highlight essential contrasts required
both the relevance and accuracy of the application in clinical foraccurate segmentation [14]. The steps of the processing pipeline
practice. are:

Image processing A.  Application of filters for lighting correction, histogram

lizati d back d subtracti - ing.
In this study, the methodology is based on the application of equatization anc backgroting subtraction as pre-processing

digital image processing techniques to automatically estimate the B.  Conversion the image into RGB and HSV (Hue, Saturation
amount of CHO present in foods from digital images. The process and Value) colour spaces to highlight contrast and facilitate
begins with the acquisition of the image in RGB (Red, Green and segmentation (Figure 1).

Blue) format, which is then converted to grayscale and enhanced

Original image

Figure 1: Example of viewing the original image (first line) in RGB (second line), HSV (third line) and LAB (fourth

line).
C. Adaptive thresholding and morphological operations D. Conversion to Lab (lightness, greenness-redness and
(opening and closing) to reduce noise and enhance object blueness-yellowness) space for automatic plate detection using
boundaries [15]. channel L and segmentation of food using channels A and B

(Figure 1).

_J[ ]
| cl

Manual vs automatic methods

!

(8]

Figure 2: Manual plate segmentation: Original image (A), manual ROI selection (B), generated mask (C) and
identification of food on the plate (D).

Significances Bioeng Biosci Copyright © Cristina MR Caridade



SBB.000674. 7(5).2025

860

Manual method: The manual procedure is intended for
cases in which automatic segmentation is unreliable (e.g. unusual
lighting, atypical plate geometry or complex background). After the
input image is loaded (Figure 2A), the user is prompted to draw
a circular Region of Interest (ROI) around the plate (Figure 2B);
execution is suspended until the selection is completed. A binary
mask is generated (Figure 2C). The mask is applied to the original
image to isolate the plate area and remove irrelevant surrounding
pixels. All subsequent segmentation steps are performed only
inside this user-defined ROI to improve robustness: The image
portion inside the ROI is enhanced with illumination-correction
filters converted to an appropriate colour space and then
segmented using adaptive thresholding (Otsu or local thresholding
when needed). Morphological operations (opening and closing) are
applied to remove small noise and to fill holes in segmented regions;
small, connected components below a predefined pixel area are
removed. The segmented result is presented to the user for visual
confirmation (see Figure 2D). Although more time-consuming than
the automatic route, the manual method provides a reliable fallback
and allows accurate segmentation when automated detection fails.

Automatic method: The automated pipeline performs plate
detection and food segmentation without user interaction. The
original RGB image (Figure 3A) is converted to the LAB colour
space to decouple luminance from chromaticity and improve
robustness to variable lighting. Plate detection is performed in the
L (luminance) channel, identifying the brightest and near-white
regions (empirically, with thresholds of L>90 on a scale of 0 to 100).
The regions found are analysed and circular/elliptical ones are
candidates for locating the plate. Once the plate mask is obtained,
the analysis is restricted to this area to exclude background and

edge reflections. Food segmentation is then obtained by analysing
the A and B chromaticity channels (Figure 1, which capture colour
opposition), after applying adaptive thresholding, illumination
correction, histogram equalization and background subtraction.
Finally, morphological operators (opening, closing) are applied to
remove noise and small isolated components (regions smaller than
100 pixels) obtaining the segmentation of the food. Final outputs
are visualized by overlaying the binary food mask onto the original
image with transparency (food highlighted in red, Figure 3D).

—.

A D

Figure 3: Automatic plate segmentation: Original image
(A) and identification of food on the plate (D).

Implementation notes & fallback strategy: Both methods
share the same segmentation and post-processing routines
(illumination correction, thresholding, morphology, small-object
removal and area-to-weight calibration), differing only in how the
plate ROI is obtained (user-defined circle vs automatic detection in
LAB). In practice, the software implements a confidence check after
automatic detection: If plate geometry or segmentation quality
metrics fall below thresholds, the interface offers the manual
ROI option to the user. Figure 4 illustrate typical examples of the
automatic (A2 for red cabbage and B2 for peas) and manual (A3, A4
for red cabbage and B3, B4 for peas) workflows.

B3

Figure 4: Examples of manual (A1-A2 and B1-B2) and automatic (A3-A4 and B3-B4) segmentation of red cabbage
and pea respectively.

Nutritional database and calculations

After food segmentation, the number of pixels corresponding
to food (Areaﬂ,od) and the number of pixels corresponding to plate

(drea,,,) are then counted, providing the digital area occupied by
the segmented item. The percentage of plate area occupied by food
is computed by Equation (1).

. _ Areaﬁmd
% Food =—=—x100. o

rea plate

To translate the food area into an estimate of the actual
food weight, calibration factors were previously determined by
correlating pixel areas with measured weights of real food samples
placed under the same imaging conditions. The relationship is
given by Equation (2):
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Weight

estimated

=Calibration,,,, x Area,,,, (2)

This conversion step ensures that digital measurements from
the image can be consistently mapped to physical food quantities,
reducing the variability and uncertainty associated with purely
visual estimation.

Once the estimated weight of food is obtained, the nutritional
composition is derived using standardized references. In this
work, the photographic manual for food quantification [1] was
selected as the primary nutritional database, given its suitability for
Portuguese and Mediterranean dietary patterns. For each food, the
macronutrient content per 100g is extracted from the manual, and
the actual nutrient values in the segmented portion are calculated.
CHO content is obtained using Equation (3).

Weight x CHO,
CHO

_ estimated 100g
plate — . (3 )

100

Similar formulas were applied for proteins and lipids, replacing
CHO,,, with the respective nutrient content per 100g. For example,
in the analysis of a courgette in the plate, suppose the estimated
weight is 91g. Given that 100g of courgette contain approximately
2.5g of CHO, the amount of CHO in the plate is calculated as
represented in Equation (4)

CH Ocourgette =M=
100

This automated approach minimizes human error typically
associated with manual or visual carbohydrate counting, thereby
supporting more effective self-management of T1DM. Both manual
and automatic image processing methods feed into this same

22g. 4

nutritional estimation workflow, differing only in how the food area
is obtained. Similar formulas were applied for proteins and lipids.

Validation

To evaluate the performance of the proposed methodology, a
validation study was conducted using a representative set of foods
commonly consumed in Portugal, such as carrots, zucchini, red
cabbage, peas, beans, ham and meat. The selection included both
plant-based foods (vegetables and legumes) and animal-based
foods, ensuring that the system could handle different colours,
textures and shapes. For each food type, multiple images were
acquired under standardized conditions and processed using
manual and automatic segmentation methods. Figure 5 shows
several different images of the same food. The percentage of the
plate area occupied by the food was calculated in both cases,
and the estimated CHO content was calculated according to the
nutritional database described in Section 3.1. The accuracy of
the automatic approach was assessed by comparing its results to
the manual method, which was treated as the reference or “gold
standard.” The mean relative error across all tested samples was
approximately 2-3%, indicating that the automatic segmentation
provides estimates very close to those obtained with manual
intervention. For example, the estimated CHO content for carrots
was 1.9g using the automatic method compared with 1.8g using
manual segmentation, and for courgettes 2.2g vs. 2.1g, respectively.
These small discrepancies fall within acceptable tolerance levels for
dietary management and clinical practice.

..
.

Figure 5: Images of a plate with different amounts of olives.

In addition to numerical comparisons, visual inspection of
the segmentation overlays confirmed that the automated method
successfully isolated food regions with minimal background
interference. The method’s robustness was particularly evident
for foods with strong colour contrasts relative to the plate (e.g,
red cabbage and carrots), while some challenges were observed
with foods with lighter hues, irregular contours (e.g., peas and
ham) or with shadows, light reflections and image distortions.

Figure 6 shows that the presence of irregular contours (top row)
and light reflections (bottom row) can influence the effectiveness
of automated food segmentation. However, noise removal and
morphological filtering reduced misclassification in these cases
and overall accuracy remained high. This validation confirmed
that ImageCarb can provide reliable macronutrient estimates with
minimal error, reinforcing its potential as a practical tool for CHO
counting in the treatment of T1DM.

Significances Bioeng Biosci

Copyright © Cristina MR Caridade



SBB.000674. 7(5).2025 862

and streamline user interaction. The core objective of ImageCarb is
to enable users to upload a digital image of a food plate and through
either automatic segmentation or manual plate selection, estimate
the occupied area and calculate the approximate nutritional values
of CHO, proteins and lipids. Given the clinical context, particular
emphasis was placed on CHO, as they are the most critical
macronutrient for glycemic control in T1IDM.

Graphical interface structure: The GUI was designed with four
main panels to provide an intuitive workflow (see Figure 7):

a) Original image (top-left corner), where the loaded image
is displayed prior to any processing.

b) Food segmentation (top-right corner), showing the
processed food segmentation after analysis.

Figure 6: Examples of images with irregular contours c) Results table, a structured output panel where each
(top row) and light reflections (bottom row) that

can influence the effectiveness of automatic food
segmentation.

analysed food is listed with its: Food name, Food area (%),
weight (g), CHO (g), lipids (g) and proteins (g).

Application development d) Status message (text box below the table), informing the

user of the current process stage (e.g., “Ready to use” at startup
The ImageCarb application was developed using MATLAB [16], or “Analysis complete” after segmentation).
incorporating a Graphical User Interface (GUI) to enhance usability

Buttons and functionalities: Several interactive buttons were implemented to enhance user control (see Figure 7):

'
imageCarb
| on

ut on-
arf R ar
w| s
asf an -
ad
o
oz

LA
e

@1 k3 83 &4 ar e [Crmmreme | et | st | T [-o-:- | e }

ana Dsrin Pevaanel 3505

Figure 7: Application development in Matlab [16].

Figure 8: Example of different thicknesses of the same food (chocolate mousse).

A. Image upload-select and load an image into the interface. C. Plate selection (Manual)-allows the user to manually
Pre-processing corrections (e.g., illumination) may be applied draw a circular Region of Interest (ROI), particularly useful in
automatically. cases where automatic detection fails.

B.  Plate selection (Automatic)-detects and masks the plate D. Clear table-deletes all entries in the results table, with
automatically, isolating only food pixels. confirmation messages to prevent accidental data loss.
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E. Export to excel-saves nutritional results to an Excel file,
enabling users to maintain a structured dietary history and
share data with nutritionists or healthcare professionals.

F. Menus were also included to:
G. Select food-link each food to stored nutritional values.

H.  Select Thickness-approximate average food thickness
(3mm, 5mm or 10mm) for 3D volume and weight estimation
(Figure 8).

Calculation workflow: The application combines segmentation
results with nutritional database values to compute nutrient
content. The following sequence is applied:

a) Food area (pixels) is determined relative to total plate
area.

b)  Volume estimation (cm?®) is calculated using the area and
user-selected food thickness.

c¢)  Weight estimation (g) is derived by applying food density
values.

d) Macronutrient calculation (CHO, proteins, lipids) is
performed using food composition per 100g.

For example, cooked beans occupying ~6000 pixels with
10mm thickness and a density of 1.05g/cm? resulted in a mass of
~4.4g. Based on nutritional tables (16.5g CHO, 8.9g proteins, 0.5g
lipids per 100g), the estimated values were ~0.73g CHO, 0.39g

proteins and 0.02g lipids. This structured approach, supported
by standardization of images (white circular plate, single food per
image), enabled consistent and reproducible testing conditions.

Results and Discussion
Initial tests

Importantly, no tools have been identified that combine
automatic image-based CHO estimation with adaptation to
Portuguese and Mediterranean dietary habits; therefore, the
ImageCarb project was designed to fill this gap by providing
a culturally adapted, image-based carbohydrate counting tool
specifically targeted to support T1DM patients. The aim was to verify
whether the segmentation methods and nutritional estimations
provided coherent and realistic results across foods with distinct
textures, colours and shapes. The foods selected for these tests
included sliced carrots, courgettes, red cabbage, peas, cooked beans,
ham, cold cuts, etc. Each item was analysed using both the manual
and automatic segmentation approaches and the resulting food
areas were compared. Some results of these tests are summarized
in Table 2, which presents, for each food, the measured quantity
in grams, the percentage of plate area detected by the automatic
and manual methods and the corresponding macronutrient
content (CHO, proteins and lipids). The Table 2 shows that, overall,
discrepancies between manual and automatic methods were small,
averaging only 2-3%. Although the manual method consistently
produced slightly lower plate area values than the automatic one,
both approaches led to comparable macronutrient estimates.

Table 2: Foods and their characteristics according to ImageCarb analysis.

Food Name Quantity (g) Plate Area Auto (%) | Plate Area Manual (%) CHO (g) Proteins (g) Lipids (g)
Carrots (sliced) 46 41.0 38.0 1.9 0.3 0.0
Courgettes 91 50.0 47.5 2.1 1.7 0.3
Red cabbage 92 45.9 42.7 5.6 1.6 5.7
Peas 16 33.1 29.6 1.3 1.0 0.1
Beans (cooked) 140 65.1 63.8 24.9 129 0.8
Ham (slices) 22 41.6 34.9 0.0 5.5 2.8
Cold cuts 23 46.0 38.2 0.0 3.9 0.8
Food macronutrients
a0
24.9
25
20
15 29
10
56 5.7 55
5 19 2197 H,I T 2.8 3.9
0.3 0.3 : : ; 0.8 0.8
W] o_ i -- LB I | | -0 ki - o . 2 I -
Carrots Courgettes Red cabbage Peas Beans Ham (slices) Cold cuts
(sliced) (cooked)
mCHO (g) mProteins (g) mLipids (g)

Figure 9: Graphical representation of three macronutrients (CHO, Proteins, Lipids).
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This is a strong indication of the reliability of the automatic
segmentation. In addition, the results confirmed that the application
provides not only carbohydrate estimates but also protein and
lipid values, offering patients a broader nutritional overview. For
example, in the case of red cabbage, the system estimated 5.6g of
HCO, 1.6g of proteins, and 5.7g of lipids, closely matching reference
values from nutritional tables. Figure 9 presents a graphical
representation of the three macronutrients (CHO, proteins and
lipids) estimated for each tested food, allowing users to quickly
compare the nutritional composition of different items. Such
visualizations are particularly helpful for diabetic patients in daily
decision-making regarding meal planning and insulin adjustment.

Accuracy of automatic vs manual methods

Across all tested samples, discrepancies between methods
averaged 2-3%, confirming the robustness of the automatic
segmentation procedure. Table 2 (first 3 columns) illustrates the
close agreement between the automatic and manual methods,
showing only minor differences in the percentage of plate area
attributed to each food. The close agreement between the automatic
and manual methods demonstrates that the system can provide
reliable results without user intervention. Visual inspection of
segmentation overlays further confirmed that the automatic method
correctly identified food areas, even in cases where colour similarity
with the plate could have posed difficulties. While high-contrast
foods such as carrots and red cabbage were segmented with near-
perfect precision, lighter foods such as ham or peas presented more
subtle challenges. Nevertheless, the implementation of background
subtraction, histogram equalization and morphological filtering
minimized misclassification, yielding stable results across food
types. It is important to note that these segmentation outcomes
form the foundation for the nutritional estimations presented in the
previous section. By ensuring strong agreement between manual
and automatic measurements, the reliability of the macronutrient
values derived from these segmentations is reinforced, further
validating the use of the automatic method in daily practice.

Nutrient estimation

The application successfully estimated macronutrients (CHO,
proteins, lipids) based on the segmented areas and calibration
factors described in Section 2.4. All values were consistent with
those reported in the nutritional database (Photographic Manual
for Food Quantification, Torres D et al. [1]). For example, in the
courgette case study, an estimated portion of 91g corresponded to
2.2g of HCO, closely matching theoretical values. This agreement
reinforces the validity of combining digital image analysis with
standardized nutritional references. Segmented image outputs
provided visual confirmation of correct food isolation, supporting
both transparency and user trust in the system.

Clinical implications

Automating HCO counting addresses a significant challenge for
individuals with T1DM, who must repeatedly estimate carbohydrate
intake throughout the day. By reducing the cognitive burden and
minimizing human error, ImageCarb directly supports more
accurate insulin dosing. This can contribute to improved glycemic

control, reduce the frequency of hypo-and hyperglycemic events
and enhance patient autonomy. Moreover, unlike generic nutrition
applications, ImageCarb integrates foods typical of Portuguese
cuisine, thereby offering a culturally adapted and clinically relevant
tool. Moreover, the role of ImageCarb may extend beyond glycemic
management, potentially influencing metabolic pathways related
to diabetic gene expression. In particular, it has been proposed
that improved carbohydrate counting and dietary regulation may
enhance the activation of Sirtuin 1, a gene associated with cellular
protection and the prevention of Type 1 Diabetes Mellitus (T1DM)
[17].

Limitations and future work

While the results demonstrate the robustness and accuracy
of the ImageCarb application, some practical considerations and
areas for further development remain to be addressed.

A.  The current system requires standardized images
of single-food portions; extension to mixed meals is still a

challenge.

B. A mobile version is under development to increase
accessibility and facilitate real-time use in daily life.

C. Integration with continuous glucose monitoring and
insulin dosing calculators would further enhance clinical utility.

D. Additional validation with larger and more diverse
datasets, including mixed dishes and different lighting
conditions, is needed to generalize the system’s applicability.

Conclusion

The development of the ImageCarb application demonstrated
the feasibility of using digital image processing techniques
to support nutritional management in people with T1DM. By
implementing both a manual method, based on user-defined RO],
and an automatic method, based on colour segmentation and
contour detection, the system was able to estimate CHO content
from food images with encouraging accuracy. Validation tests with
different food types confirmed that discrepancies between the
two approaches were generally small (2-3%), and both methods
provided consistent nutritional estimations. The automatic method
proved to be faster and more consistent in cases of regular-shaped,
high-contrast foods, while the manual method was more precise
in complex scenarios but dependent on the user’s experience.
Analysis of different portion sizes of the same food also showed that
the application responded proportionally to changes in quantity,
ensuring coherence in weight and macronutrient estimates.
Some variations were observed in larger portions, which may be
attributed to the simplified two-dimensional model used and the
lack of a real calibration system with physical reference objects.

Despite these limitations, the results validate the concept of
ImageCarb as a practical and promising digital health tool for
daily CHO counting in T1DM, contributing to improved glycemic
control and better quality of life for patients. The main limitations
identified include the influence of lighting and shadows on
automatic segmentation, difficulties in detecting overlapping
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foods, the absence of precise thickness measurement of food items
and variability introduced by different users when performing
manual selection. Addressing these issues is essential to enhance
the robustness and clinical applicability of the system. Future
Work building upon these findings, several directions for future
development are proposed. The automatic segmentation system
can be enhanced through the integration of Artificial Intelligence
(AI) and Convolutional Neural Networks (CNNs) for automatic
food recognition and more precise contour detection. Introducing
physical calibration methods, such as reference objects with known
dimensions placed on the plate, could significantly improve volume
estimation and therefore the accuracy of mass and macronutrient
calculations. The use of 3D reconstruction techniques may further
refine estimations for larger or irregular food portions. Expanding
the datasettoinclude a wider variety of foods, including mixed meals
and culturally specific dishes, will improve the generalizability of
the application.

Additionally, implementing a mobile-friendly version of
ImageCarb and integrating it with continuous glucose monitoring
systems and insulin dose calculators would strengthen its utility
in everyday diabetes management. In conclusion, the ImageCarb
project successfully achieved its objectives by demonstrating that
automated CHO estimation from food images is both feasible and
clinically relevant. With continued improvements and validation,
ImageCarb has the potential to evolve into a robust reference tool
for nutritional management in T1DM, combining technological
innovation with practical applicability in real-world settings.
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