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Abstract
Type 1 Diabetes Mellitus (T1DM) requires strict carbohydrate counting to adjust insulin doses 
and maintain glycemic control. Manual carbohydrate estimation is time-consuming and prone 
to human error, creating a need for automated tools. This study presents the development of 
ImageCarb, an intelligent application implemented in MATLAB that automatically segments food 
items from digital images and estimates carbohydrate content. Images were standardized with 
a white round plate, single food type per plate and light background to ensure reliability. Two 
segmentation approaches were implemented: A manual Region of Interest (ROI) method and 
a fully automated segmentation method using colour space conversion (RGB to HSV and LAB), 
adaptive thresholding and morphological operations. Nutritional data were integrated from 
standardized databases photographic manual for food quantification [1]. Tests were performed 
with representative Portuguese foods, including carrots, courgettes, red cabbage, peas, beans, ham 
and cold cuts. Results demonstrated that the automated method achieved a discrepancy of only 
2-3% compared with the manual method, validating its accuracy and robustness. Carbohydrate 
estimates were consistent with reference nutritional tables and the system successfully provided 
macronutrient breakdown (carbohydrates, proteins, lipids). The ImageCarb application thus 
offers a user-friendly tool to support carbohydrate counting in T1DM patients, with potential to 
improve glycemia management and quality of life. Future directions include expanding the system 
to complex mixed meals, integrating real-time continuous glucose monitoring and implementing a 
mobile application interface.

Keywords: Type 1 diabetes; Carbohydrate counting; Digital image processing; Food recognition

Abbreviations: ADA: American Diabetes Association; CHO: Carbohydrates; GUI: Graphical User 
Interface; HSV: Hue Saturation Value; LAB: Lightness, A (greenness-redness) and B (blueness-
yellowness); T1DM: Type 1 Diabetes Mellitus; RGB: R (Red), G (Green) and B (Blue), ROI: Region 
of Interest

Introduction
Type 1 Diabetes Mellitus (T1DM) is a chronic autoimmune condition in which pancreatic 

β-cells are destroyed, resulting in little or no endogenous insulin production [2]. Without 
this hormone, the body cannot effectively transport glucose into cells for energy, leading to 
hyperglycemia and if uncontrolled, serious complications such as cardiovascular disease, 
neuropathy, retinopathy and nephropathy [3]. To prevent these outcomes, people with T1DM 
must administer exogenous insulin and closely monitor their blood glucose levels daily [4,5]. 
Carbohydrate (CHO) intake is the primary dietary factor influencing postprandial glycemia. 

http://dx.doi.org/10.31031/SBB.2025.07.000674
https://crimsonpublishers.com/sbb/
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Accurate CHO counting allows patients to match insulin doses to 
the amount of CHO consumed, supporting better glycemia control 
and reducing the risk of both acute and long-term complications [3]. 
However, manual CHO estimation can be cognitively demanding, 
tiring and error-prone, particularly when assessing portion sizes 
and complex meals. For this reason, reliable methods and digital 
tools that simplify CHO estimation have become a priority in 
diabetes management and patient education. The present study 
makes use of the photographic manual for food quantification 
[1] as the reference nutritional database to ensure accurate and 
standardized macronutrient calculations.

Several digital solutions support nutritional monitoring, 
including applications such as MyFitnessPal, Carb Manager and 
SnapCalorie, which rely on databases and image recognition [6-
8]. However, these tools are not specifically designed for T1DM 
and often lack insulin dose calculation support. More specialized 
apps, such as CHO, integrate insulin calculators but remain limited 
in database flexibility and integration with continuous glucose 
monitoring [9]. In addition, although some mobile applications 
and digital interventions have been developed to encourage 
adherence to the Mediterranean diet or to include Mediterranean-
style recipes [10-13], they are not specifically designed for CHO 
counting, nor do they integrate insulin management functionalities. 
Importantly, no tools have been identified that combine automatic 
image-based CHO estimation with adaptation to Portuguese and 
Mediterranean dietary habits. In this context, the ImageCarb project 
addresses a clear unmet need by providing a culturally adapted, 
automatic, image-based CHO counting tool specifically targeted to 
support T1DM patients. This article describes the methodology, 
implementation and evaluation of ImageCarb, highlighting its 
clinical relevance for T1DM management. Ultimately, the aim of 
this work is to ease the daily life of individuals living with T1DM by 
providing an intuitive and user-friendly tool that enables precise 
CHO counting through the digital image processing of foods.

Background: Type 1 Diabetes and Carbohydrate 
Counting

ImageCarb represents an added value for people with T1DM, 
offering a fast and simple approach to CHO counting based only on 

images of meals. By reducing the effort and uncertainty involved 
in manual CHO estimation, the application supports patients in 
achieving more precise insulin control. An additional advantage is 
the fact that this tool was developed in Portugal, being culturally 
adapted to Portuguese dietary habits and Mediterranean cuisine, 
which enhances its relevance for local users. T1DM is a medical 
condition in which the body produces little or no insulin. Insulin 
is the hormone responsible for transporting glucose from the 
bloodstream into the body’s cells, where it can be used as energy. 
When glucose is not properly absorbed, it accumulates in the blood, 
causing hyperglycemia. Persistent hyperglycemia is associated with 
damage to blood vessels, nerves, eyes, kidneys and other organs 
[3]. For people with T1DM, this means that continuous monitoring 
of glucose levels and strict control of insulin administration are 
part of their daily routine. CHO are the main dietary component 
influencing postprandial blood glucose levels. Following ingestion, 
CHO are metabolized to glucose, which becomes the primary source 
of immediate energy.

Simple CHO, such as sugar and fruit juice, are rapidly absorbed 
and cause sharp increases in glycemia, whereas complex CHO, such 
as whole grains and legumes, are digested more slowly, releasing 
glucose gradually and helping to stabilize glycemic levels [9]. 
Fiber also plays an important role in slowing glucose absorption, 
supporting improved metabolic control [3]. Table 1 (adapted 
from American Diabetes Association (ADA), 2023) illustrates the 
reference values for blood glucose levels in different conditions, 
showing the ranges for individuals without diabetes, with T1DM, 
as well as thresholds for hypoglycemia and hyperglycemia in 
fasting and postprandial states. These benchmarks highlight the 
importance of accurately matching CHO intake with insulin dosing 
to prevent both hypo-and hyperglycemic events. Nutritional 
education is therefore a cornerstone of T1DM management. 
Patients must learn to count CHO, understand the glycemic index 
and glycemic loads of foods and adjust insulin doses accordingly. In 
Portugal, where Mediterranean diet patterns dominate, integrating 
these concepts with local food habits is particularly important. By 
automating CHO counting and adapting the system to Portuguese 
foods, ImageCarb contributes not only to metabolic control but also 
to patient empowerment, education and quality of life.

Table 1: Reference values for blood glucose levels based on ADA, 2023.

Status No Diabetes (mg/dL) Type 1 Diabetes Mellitus (mg/
dL) Hypoglycemia (mg/dL) Hyperglycemia (mg/dL)

Fasting (8 hours without 
eating) 70-99 80-130 <70 > 130

2 hours after meal < 140 < 180 < 70 > 180

Materials and Methods
Image dataset

Images were standardized to minimize variability: A white, 
round plate placed on a light background, containing only one type 
of food per image. This standardization reduced segmentation 
errors and improved reproducibility. Nutritional information 

and reference values for the foods analyzed were obtained from 
the photographic manual for food quantification [1]. One of the 
key reasons for selecting this database is that ImageCarb was 
developed specifically for the Portuguese context, where dietary 
habits are strongly influenced by the Mediterranean diet. Using a 
nutritional database rooted in Mediterranean food culture ensures 
that the system is adapted to local eating patterns and includes 
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representative foods frequently consumed in Portugal, increasing 
both the relevance and accuracy of the application in clinical 
practice.

Image processing

In this study, the methodology is based on the application of 
digital image processing techniques to automatically estimate the 
amount of CHO present in foods from digital images. The process 
begins with the acquisition of the image in RGB (Red, Green and 
Blue) format, which is then converted to grayscale and enhanced 

using a luminance method to highlight essential contrasts required 
for accurate segmentation [14]. The steps of the processing pipeline 
are:

A.	 Application of filters for lighting correction, histogram 
equalization and background subtraction as pre-processing.

B.	 Conversion the image into RGB and HSV (Hue, Saturation 
and Value) colour spaces to highlight contrast and facilitate 
segmentation (Figure 1).

Figure 1: Example of viewing the original image (first line) in RGB (second line), HSV (third line) and LAB (fourth 
line).

C.	 Adaptive thresholding and morphological operations 
(opening and closing) to reduce noise and enhance object 
boundaries [15].

D.	 Conversion to Lab (lightness, greenness-redness and 
blueness-yellowness) space for automatic plate detection using 
channel L and segmentation of food using channels A and B 
(Figure 1).

Manual vs automatic methods

Figure 2: Manual plate segmentation: Original image (A), manual ROI selection (B), generated mask (C) and 
identification of food on the plate (D).



860

Significances Bioeng Biosci  Copyright © Cristina MR Caridade

SBB.000674. 7(5).2025

Manual method: The manual procedure is intended for 
cases in which automatic segmentation is unreliable (e.g. unusual 
lighting, atypical plate geometry or complex background). After the 
input image is loaded (Figure 2A), the user is prompted to draw 
a circular Region of Interest (ROI) around the plate (Figure 2B); 
execution is suspended until the selection is completed. A binary 
mask is generated (Figure 2C). The mask is applied to the original 
image to isolate the plate area and remove irrelevant surrounding 
pixels. All subsequent segmentation steps are performed only 
inside this user-defined ROI to improve robustness: The image 
portion inside the ROI is enhanced with illumination-correction 
filters converted to an appropriate colour space and then 
segmented using adaptive thresholding (Otsu or local thresholding 
when needed). Morphological operations (opening and closing) are 
applied to remove small noise and to fill holes in segmented regions; 
small, connected components below a predefined pixel area are 
removed. The segmented result is presented to the user for visual 
confirmation (see Figure 2D). Although more time-consuming than 
the automatic route, the manual method provides a reliable fallback 
and allows accurate segmentation when automated detection fails.

Automatic method: The automated pipeline performs plate 
detection and food segmentation without user interaction. The 
original RGB image (Figure 3A) is converted to the LAB colour 
space to decouple luminance from chromaticity and improve 
robustness to variable lighting. Plate detection is performed in the 
L (luminance) channel, identifying the brightest and near-white 
regions (empirically, with thresholds of L>90 on a scale of 0 to 100). 
The regions found are analysed and circular/elliptical ones are 
candidates for locating the plate. Once the plate mask is obtained, 
the analysis is restricted to this area to exclude background and 

edge reflections. Food segmentation is then obtained by analysing 
the A and B chromaticity channels (Figure 1, which capture colour 
opposition), after applying adaptive thresholding, illumination 
correction, histogram equalization and background subtraction. 
Finally, morphological operators (opening, closing) are applied to 
remove noise and small isolated components (regions smaller than 
100 pixels) obtaining the segmentation of the food. Final outputs 
are visualized by overlaying the binary food mask onto the original 
image with transparency (food highlighted in red, Figure 3D).

Figure 3: Automatic plate segmentation: Original image 
(A) and identification of food on the plate (D).

Implementation notes & fallback strategy: Both methods 
share the same segmentation and post-processing routines 
(illumination correction, thresholding, morphology, small-object 
removal and area-to-weight calibration), differing only in how the 
plate ROI is obtained (user-defined circle vs automatic detection in 
LAB). In practice, the software implements a confidence check after 
automatic detection: If plate geometry or segmentation quality 
metrics fall below thresholds, the interface offers the manual 
ROI option to the user. Figure 4 illustrate typical examples of the 
automatic (A2 for red cabbage and B2 for peas) and manual (A3, A4 
for red cabbage and B3, B4 for peas) workflows.

Figure 4: Examples of manual (A1-A2 and B1-B2) and automatic (A3-A4 and B3-B4) segmentation of red cabbage 
and pea respectively.

Nutritional database and calculations

After food segmentation, the number of pixels corresponding 
to food ( )foodArea  and the number of pixels corresponding to plate 
( )plateArea  are then counted, providing the digital area occupied by 
the segmented item. The percentage of plate area occupied by food 
is computed by Equation (1).

% 100. (1)food

plate

Area
Food

Area
= ×

To translate the food area into an estimate of the actual 
food weight, calibration factors were previously determined by 
correlating pixel areas with measured weights of real food samples 
placed under the same imaging conditions. The relationship is 
given by Equation (2):
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(2)estimated factor foodWeight Calibration Area= ×
This conversion step ensures that digital measurements from 

the image can be consistently mapped to physical food quantities, 
reducing the variability and uncertainty associated with purely 
visual estimation.

Once the estimated weight of food is obtained, the nutritional 
composition is derived using standardized references. In this 
work, the photographic manual for food quantification [1] was 
selected as the primary nutritional database, given its suitability for 
Portuguese and Mediterranean dietary patterns. For each food, the 
macronutrient content per 100g is extracted from the manual, and 
the actual nutrient values in the segmented portion are calculated. 
CHO content is obtained using Equation (3).

100 . (3)
100

estimated g
plate

Weight CHO
CHO

×
=

Similar formulas were applied for proteins and lipids, replacing  
100gCHO  with the respective nutrient content per 100g. For example, 

in the analysis of a courgette in the plate, suppose the estimated 
weight is 91g. Given that 100g of courgette contain approximately 
2.5g of CHO, the amount of CHO in the plate is calculated as 
represented in Equation (4)

91 2.5 2.2 . (4)
100courgetteCHO g×

= =

This automated approach minimizes human error typically 
associated with manual or visual carbohydrate counting, thereby 
supporting more effective self-management of T1DM. Both manual 
and automatic image processing methods feed into this same 

nutritional estimation workflow, differing only in how the food area 
is obtained. Similar formulas were applied for proteins and lipids.

Validation

To evaluate the performance of the proposed methodology, a 
validation study was conducted using a representative set of foods 
commonly consumed in Portugal, such as carrots, zucchini, red 
cabbage, peas, beans, ham and meat. The selection included both 
plant-based foods (vegetables and legumes) and animal-based 
foods, ensuring that the system could handle different colours, 
textures and shapes. For each food type, multiple images were 
acquired under standardized conditions and processed using 
manual and automatic segmentation methods. Figure 5 shows 
several different images of the same food. The percentage of the 
plate area occupied by the food was calculated in both cases, 
and the estimated CHO content was calculated according to the 
nutritional database described in Section 3.1. The accuracy of 
the automatic approach was assessed by comparing its results to 
the manual method, which was treated as the reference or “gold 
standard.” The mean relative error across all tested samples was 
approximately 2-3%, indicating that the automatic segmentation 
provides estimates very close to those obtained with manual 
intervention. For example, the estimated CHO content for carrots 
was 1.9g using the automatic method compared with 1.8g using 
manual segmentation, and for courgettes 2.2g vs. 2.1g, respectively. 
These small discrepancies fall within acceptable tolerance levels for 
dietary management and clinical practice.

Figure 5: Images of a plate with different amounts of olives.

In addition to numerical comparisons, visual inspection of 
the segmentation overlays confirmed that the automated method 
successfully isolated food regions with minimal background 
interference. The method’s robustness was particularly evident 
for foods with strong colour contrasts relative to the plate (e.g., 
red cabbage and carrots), while some challenges were observed 
with foods with lighter hues, irregular contours (e.g., peas and 
ham) or with shadows, light reflections and image distortions. 

Figure 6 shows that the presence of irregular contours (top row) 
and light reflections (bottom row) can influence the effectiveness 
of automated food segmentation. However, noise removal and 
morphological filtering reduced misclassification in these cases 
and overall accuracy remained high. This validation confirmed 
that ImageCarb can provide reliable macronutrient estimates with 
minimal error, reinforcing its potential as a practical tool for CHO 
counting in the treatment of T1DM.
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Figure 6: Examples of images with irregular contours 
(top row) and light reflections (bottom row) that 

can influence the effectiveness of automatic food 
segmentation.

Application development

The ImageCarb application was developed using MATLAB [16], 
incorporating a Graphical User Interface (GUI) to enhance usability 

and streamline user interaction. The core objective of ImageCarb is 
to enable users to upload a digital image of a food plate and through 
either automatic segmentation or manual plate selection, estimate 
the occupied area and calculate the approximate nutritional values 
of CHO, proteins and lipids. Given the clinical context, particular 
emphasis was placed on CHO, as they are the most critical 
macronutrient for glycemic control in T1DM.

Graphical interface structure: The GUI was designed with four 
main panels to provide an intuitive workflow (see Figure 7):

a)	 Original image (top-left corner), where the loaded image 
is displayed prior to any processing.

b)	 Food segmentation (top-right corner), showing the 
processed food segmentation after analysis.

c)	 Results table, a structured output panel where each 
analysed food is listed with its: Food name, Food area (%), 
weight (g), CHO (g), lipids (g) and proteins (g).

d)	 Status message (text box below the table), informing the 
user of the current process stage (e.g., “Ready to use” at startup 
or “Analysis complete” after segmentation).

Buttons and functionalities: Several interactive buttons were implemented to enhance user control (see Figure 7):

Figure 7: Application development in Matlab [16].

Figure 8: Example of different thicknesses of the same food (chocolate mousse).

A.	 Image upload-select and load an image into the interface. 
Pre-processing corrections (e.g., illumination) may be applied 
automatically.

B.	 Plate selection (Automatic)-detects and masks the plate 
automatically, isolating only food pixels.

C.	 Plate selection (Manual)-allows the user to manually 
draw a circular Region of Interest (ROI), particularly useful in 
cases where automatic detection fails.

D.	 Clear table-deletes all entries in the results table, with 
confirmation messages to prevent accidental data loss.
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E.	 Export to excel-saves nutritional results to an Excel file, 
enabling users to maintain a structured dietary history and 
share data with nutritionists or healthcare professionals.

F.	 Menus were also included to:

G.	 Select food-link each food to stored nutritional values.

H.	 Select Thickness-approximate average food thickness 
(3mm, 5mm or 10mm) for 3D volume and weight estimation 
(Figure 8).

Calculation workflow: The application combines segmentation 
results with nutritional database values to compute nutrient 
content. The following sequence is applied:

a)	 Food area (pixels) is determined relative to total plate 
area.

b)	 Volume estimation (cm³) is calculated using the area and 
user-selected food thickness.

c)	 Weight estimation (g) is derived by applying food density 
values.

d)	 Macronutrient calculation (CHO, proteins, lipids) is 
performed using food composition per 100g.

For example, cooked beans occupying ~6000 pixels with 
10mm thickness and a density of 1.05g/cm³ resulted in a mass of 
~4.4g. Based on nutritional tables (16.5g CHO, 8.9g proteins, 0.5g 
lipids per 100g), the estimated values were ~0.73g CHO, 0.39g 

proteins and 0.02g lipids. This structured approach, supported 
by standardization of images (white circular plate, single food per 
image), enabled consistent and reproducible testing conditions.

Results and Discussion
Initial tests

Importantly, no tools have been identified that combine 
automatic image-based CHO estimation with adaptation to 
Portuguese and Mediterranean dietary habits; therefore, the 
ImageCarb project was designed to fill this gap by providing 
a culturally adapted, image-based carbohydrate counting tool 
specifically targeted to support T1DM patients. The aim was to verify 
whether the segmentation methods and nutritional estimations 
provided coherent and realistic results across foods with distinct 
textures, colours and shapes. The foods selected for these tests 
included sliced carrots, courgettes, red cabbage, peas, cooked beans, 
ham, cold cuts, etc. Each item was analysed using both the manual 
and automatic segmentation approaches and the resulting food 
areas were compared. Some results of these tests are summarized 
in Table 2, which presents, for each food, the measured quantity 
in grams, the percentage of plate area detected by the automatic 
and manual methods and the corresponding macronutrient 
content (CHO, proteins and lipids). The Table 2 shows that, overall, 
discrepancies between manual and automatic methods were small, 
averaging only 2-3%. Although the manual method consistently 
produced slightly lower plate area values than the automatic one, 
both approaches led to comparable macronutrient estimates.

Table 2: Foods and their characteristics according to ImageCarb analysis.

Food Name Quantity (g) Plate Area Auto (%) Plate Area Manual (%) CHO (g) Proteins (g) Lipids (g)

Carrots (sliced) 46 41.0 38.0 1.9 0.3 0.0

Courgettes 91 50.0 47.5 2.1 1.7 0.3

Red cabbage 92 45.9 42.7 5.6 1.6 5.7

Peas 16 33.1 29.6 1.3 1.0 0.1

Beans (cooked) 140 65.1 63.8 24.9 12.9 0.8

Ham (slices) 22 41.6 34.9 0.0 5.5 2.8

Cold cuts 23 46.0 38.2 0.0 3.9 0.8

Figure 9: Graphical representation of three macronutrients (CHO, Proteins, Lipids).
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This is a strong indication of the reliability of the automatic 
segmentation. In addition, the results confirmed that the application 
provides not only carbohydrate estimates but also protein and 
lipid values, offering patients a broader nutritional overview. For 
example, in the case of red cabbage, the system estimated 5.6g of 
HCO, 1.6g of proteins, and 5.7g of lipids, closely matching reference 
values from nutritional tables. Figure 9 presents a graphical 
representation of the three macronutrients (CHO, proteins and 
lipids) estimated for each tested food, allowing users to quickly 
compare the nutritional composition of different items. Such 
visualizations are particularly helpful for diabetic patients in daily 
decision-making regarding meal planning and insulin adjustment.

Accuracy of automatic vs manual methods

Across all tested samples, discrepancies between methods 
averaged 2-3%, confirming the robustness of the automatic 
segmentation procedure. Table 2 (first 3 columns) illustrates the 
close agreement between the automatic and manual methods, 
showing only minor differences in the percentage of plate area 
attributed to each food. The close agreement between the automatic 
and manual methods demonstrates that the system can provide 
reliable results without user intervention. Visual inspection of 
segmentation overlays further confirmed that the automatic method 
correctly identified food areas, even in cases where colour similarity 
with the plate could have posed difficulties. While high-contrast 
foods such as carrots and red cabbage were segmented with near-
perfect precision, lighter foods such as ham or peas presented more 
subtle challenges. Nevertheless, the implementation of background 
subtraction, histogram equalization and morphological filtering 
minimized misclassification, yielding stable results across food 
types. It is important to note that these segmentation outcomes 
form the foundation for the nutritional estimations presented in the 
previous section. By ensuring strong agreement between manual 
and automatic measurements, the reliability of the macronutrient 
values derived from these segmentations is reinforced, further 
validating the use of the automatic method in daily practice.

Nutrient estimation

The application successfully estimated macronutrients (CHO, 
proteins, lipids) based on the segmented areas and calibration 
factors described in Section 2.4. All values were consistent with 
those reported in the nutritional database (Photographic Manual 
for Food Quantification, Torres D et al. [1]). For example, in the 
courgette case study, an estimated portion of 91g corresponded to 
2.2g of HCO, closely matching theoretical values. This agreement 
reinforces the validity of combining digital image analysis with 
standardized nutritional references. Segmented image outputs 
provided visual confirmation of correct food isolation, supporting 
both transparency and user trust in the system.

Clinical implications

Automating HCO counting addresses a significant challenge for 
individuals with T1DM, who must repeatedly estimate carbohydrate 
intake throughout the day. By reducing the cognitive burden and 
minimizing human error, ImageCarb directly supports more 
accurate insulin dosing. This can contribute to improved glycemic 

control, reduce the frequency of hypo-and hyperglycemic events 
and enhance patient autonomy. Moreover, unlike generic nutrition 
applications, ImageCarb integrates foods typical of Portuguese 
cuisine, thereby offering a culturally adapted and clinically relevant 
tool. Moreover, the role of ImageCarb may extend beyond glycemic 
management, potentially influencing metabolic pathways related 
to diabetic gene expression. In particular, it has been proposed 
that improved carbohydrate counting and dietary regulation may 
enhance the activation of Sirtuin 1, a gene associated with cellular 
protection and the prevention of Type 1 Diabetes Mellitus (T1DM) 
[17].

Limitations and future work

While the results demonstrate the robustness and accuracy 
of the ImageCarb application, some practical considerations and 
areas for further development remain to be addressed.

A.	 The current system requires standardized images 
of single-food portions; extension to mixed meals is still a 
challenge.

B.	 A mobile version is under development to increase 
accessibility and facilitate real-time use in daily life.

C.	 Integration with continuous glucose monitoring and 
insulin dosing calculators would further enhance clinical utility.

D.	 Additional validation with larger and more diverse 
datasets, including mixed dishes and different lighting 
conditions, is needed to generalize the system’s applicability.

Conclusion
The development of the ImageCarb application demonstrated 

the feasibility of using digital image processing techniques 
to support nutritional management in people with T1DM. By 
implementing both a manual method, based on user-defined ROI, 
and an automatic method, based on colour segmentation and 
contour detection, the system was able to estimate CHO content 
from food images with encouraging accuracy. Validation tests with 
different food types confirmed that discrepancies between the 
two approaches were generally small (2-3%), and both methods 
provided consistent nutritional estimations. The automatic method 
proved to be faster and more consistent in cases of regular-shaped, 
high-contrast foods, while the manual method was more precise 
in complex scenarios but dependent on the user’s experience. 
Analysis of different portion sizes of the same food also showed that 
the application responded proportionally to changes in quantity, 
ensuring coherence in weight and macronutrient estimates. 
Some variations were observed in larger portions, which may be 
attributed to the simplified two-dimensional model used and the 
lack of a real calibration system with physical reference objects.

Despite these limitations, the results validate the concept of 
ImageCarb as a practical and promising digital health tool for 
daily CHO counting in T1DM, contributing to improved glycemic 
control and better quality of life for patients. The main limitations 
identified include the influence of lighting and shadows on 
automatic segmentation, difficulties in detecting overlapping 



865

Significances Bioeng Biosci  Copyright © Cristina MR Caridade

SBB.000674. 7(5).2025

foods, the absence of precise thickness measurement of food items 
and variability introduced by different users when performing 
manual selection. Addressing these issues is essential to enhance 
the robustness and clinical applicability of the system. Future 
Work building upon these findings, several directions for future 
development are proposed. The automatic segmentation system 
can be enhanced through the integration of Artificial Intelligence 
(AI) and Convolutional Neural Networks (CNNs) for automatic 
food recognition and more precise contour detection. Introducing 
physical calibration methods, such as reference objects with known 
dimensions placed on the plate, could significantly improve volume 
estimation and therefore the accuracy of mass and macronutrient 
calculations. The use of 3D reconstruction techniques may further 
refine estimations for larger or irregular food portions. Expanding 
the dataset to include a wider variety of foods, including mixed meals 
and culturally specific dishes, will improve the generalizability of 
the application.

Additionally, implementing a mobile-friendly version of 
ImageCarb and integrating it with continuous glucose monitoring 
systems and insulin dose calculators would strengthen its utility 
in everyday diabetes management. In conclusion, the ImageCarb 
project successfully achieved its objectives by demonstrating that 
automated CHO estimation from food images is both feasible and 
clinically relevant. With continued improvements and validation, 
ImageCarb has the potential to evolve into a robust reference tool 
for nutritional management in T1DM, combining technological 
innovation with practical applicability in real-world settings.
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