

On Sunlight & Cells: The Origin of Life

Paul T E Cusack*

Department of BScE, Saint John, Canada

ISSN: 2637-8078

*Corresponding author: Paul T E Cusack, Department of BScE, Saint John, Canada

Submission: ⊞ January 10, 2024 **Published: ⊞** January 23, 2024

Volume 6 - Issue 4

How to cite this article: Paul T E Cusack*. On Sunlight & Cells: The Origin of Life. Significances Bioeng Biosci. 6(4). SBB. 000644. 2024.

DOI: 10.31031/SBB.2024.06.000644

Copyright@ Paul T E Cusack, This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Opinion

There was a recent article sin Nature I'm unable to locate that tells us that life may have begun 1.75 BYA. Here is the math confirming it (Figure 1).

Binominal Decision Tree

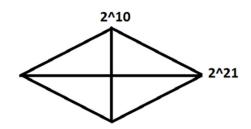


Figure 1: Binominal Distribution.

$$CO_2 + H_2O =\Rightarrow CH_2 + 1\frac{1}{2}O_2$$

$$12.00 + 2 = 14$$

$$3(16) = 48$$

$$\sum = 62 \times 6.022 = 373.364 \approx \frac{1}{2}.67 = \frac{1}{F} = E$$

$$E = \frac{3}{8} = 0.375$$

$$E^2 + E - 2 = t$$

$$375^2 + 375 - 2 = 2234 = t$$

$$E = \frac{1}{t} = \frac{1}{2234} = -4.475$$

$$-Ln \cdot 4.475 = -149.86 = \frac{1}{-6.673} \approx \frac{1}{G}$$

$$M = Lnt$$

$$= Ln \cdot 2.234 = \frac{1}{0.804} = 1.244$$

$$\frac{1}{81} = 0.012345679$$

$$1.75 \text{ Billion years } Ago = \frac{1}{57.14} \approx \frac{1}{1} \text{ rad}$$

$$0.571428^2 - 0.571428 - 1 = 1.244(Cf)$$
Might I add:
If there are 1×10^{47} particles in the universe

SBB.000644. 6(4).2024 697

$$Ln(1\times10^{47}) = 1.0882214994$$
$$= \frac{1}{9240308126}$$

$$t^2 - t - 1 = E$$
$$924^2 - 924 - 1 = 1024 = 2^{10}$$