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Abstract
Medulloblastoma is the most typical malignant brain tumor in kids. Younger children, especially 
babies, are at a considerably increased risk of therapeutic adverse effects. Despite significant 
advancement in the domain of medulloblastoma molecular biology, much remains to be 
accomplished in comprehending the etiology, important mechanisms causing medulloblastoma, and 
molecular risk stratification, as well as developing strategies of treatment with improved survival 
and fewer long-term squeal. So, the goal of this study is to look at and assist in the Identification 
and annotation of differentially expressed genes in Medulloblastoma for better treatment and 
long-term survival of the patients. Identification of potential therapeutic targets among the 
differentially expressed genes can be done by RNA-seq data analysis. This is accomplished by 
regulating the quality of data. We read the HTseq values with the DESeq2 tool and divided the 
data into normal and sick categories. This utility computes the per-exon and per-gene read counts 
for certain genes using RNA-seq data. We used raw numbers and a discrete distribution model to 
test for differential expression. Finally, annotated DESeq2 was utilized to identify differentially 
expressed genes. The GO enrichment and KEGG pathway in the context of CC (Cellular Component), 
BP (Biological Process), MF (Molecular Function), and their associated KEGG pathways indicated 
the functional annotation of DEGs. The analysis of the functional enrichment of DEGs revealed 
that the genes were engaged in oxidative Phosphorylation, Cytoplasmic Translation, and negative 
regulation of Ubiquitin-Protein ligase activity in terms of BP. This study will provide an overview 
of the current understanding of Medulloblastoma using a bioinformatics approach, as well as 
therapeutic prospects now being researched in surgery, radiation, and targeted medicines to 
maximize medulloblastoma treatment using a multidisciplinary approach.

Keywords: Medulloblastoma; RNA-seq; Galaxy

Introduction
Medulloblastoma (MB) is a type of cancer that affects the Cerebellum, a part of the brain 

that is responsible for coordinating movement and balance. MB is a highly aggressive form of 
cancer that is most commonly diagnosed in babies, comprising 15-20% of all pediatric brain 
tumors [1,2]. It is relatively rare in adults, with most cases occurring in children between the 
ages of 4 and 7 [3]. Boys are more likely to develop MB than girls [4]. MB is a Heterogeneous 
Tumor, meaning that it has different molecular subtypes. These subtypes, which go by the 
names WNT, SHH, G3, and G4, have distinctive genomic landscapes and are linked to a number 
of risk factors [5]. Currently, the main treatment options for MB are surgery, Chemotherapy, and 
Radiotherapy (for children over 3 years old). Surgery involves removing as much of the tumor 
as possible, while Chemotherapy and Radiotherapy are used to kill cancer cells and shrink the 
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remaining tumor. Despite these efforts, metastatic disease is still 
the main cause of death in MB [6], although multimodal therapy 
has greatly improved the prognosis for many patients. 5-year 
overall survival rates for MB are now more than 70%, but survivors 
often experience long-term neurocognitive sequelae [7]. In recent 
years, the public database GEO (Gene Expression Omnibus) 
has been widely used to analyze microarray and bioinformatics 
data to determine the molecular processes and underlying gene 
characteristics that contribute to MB and other types of cancer.

 For example, the oncogene MYC is frequently altered in MB, 
and children with MYC-amplified MB often do not respond well 
to current treatment methods [8]. Bioinformatics and statistical 
analysis have been used to determine and predict the underlying 
mechanisms and pathways of MB and to develop more targeted and 
effective treatments for the disease [5]. These approaches involve 
identifying and targeting specific genes, signaling pathways, and 
proteins that are involved in the development and progression of 
MB. In current studies, we analyzed RNA-seq data to evaluate gene 
and transcript expression and potentially identify differentially 
expressed genes. The data for this analysis was obtained from the 
NCBI, and we used the DESeq2 program to perform differential 
expression analysis, normalization, and visualization. Additionally, 
we performed pathway analysis to identify pathways that were 
differentially expressed between normal and diseased samples. 
Our results indicated that several genes, such as those that 
controlled cell cycle progression and DNA damage response which 
is differentially expressed genes.

Materials and Methods
RNA-seq data analysis involves several steps. The first 

step is evaluating the quality of the readings, and if necessary, 
preprocessing is performed to eliminate low-quality data and 
artifacts. If a reference genome is available, the reads are matched 
to it to determine their origin. Gene and transcript expression is 
then measured, and novel genes and transcripts can be identified 
through genome-guided transcriptome assembly. Alternatively, 
the expression of known genes and transcripts can be measured 
without identifying new ones. Statistical testing may be used 
to examine expression differences across sample groups after 
abundance estimates have been derived using one of these methods.

Data retrieval
Data was downloaded from the NCBI in .gz format. The 

GSE189919 (from SRR17079057 to SRR17079106, there are 11 
normal samples and 39 diseased samples) dataset was selected 
based on the experiment type (high throughput sequencing) and 
platform (NextSeq 550) [9].

Quality control of data 
Problems with data quality can occur during the sequencing 

process or library preparation. These issues may include low-
confidence bases, sequence-specific bias, 5′/3′ positional bias, 
PCR artifacts, untrimmed adapters, and sequence contamination, 
which can affect mapping to reference, assembly, and expression 

estimation. Quality Control tools such as FastQC and PRINSEQ can 
be used to identify and mitigate these issues, and FastQC was used 
in this study to inspect the quality of the data. If low-quality bases 
are found at the ends of reads, they can be trimmed or a specific 
number of bases can be removed from either end. However, this 
method may also eliminate high-quality sequences. The quality of 
the raw files was deemed acceptable based on the FastQC report, 
which showed a GC percentage of 43-51% (close to the ideal range 
of 50-60%) and no major issues [10].

Reference alignment of reads
Alignment is the process of putting sequences together to see 

how and where they are connected. By matching or mapping a 
read to a reference genome or transcriptome, one can infer where 
it originated. A reference genome might be very large and contain 
non-unique sequences like repetitions and pseudo-genes, which 
reduces the ability of these regions to be mapped. Although there are 
millions of them and they are all short, genomes can be incredibly 
big. The human reference genome was aligned with query reads 
using bowtie aligners. The file “dna.toplevel.fa.gz,” which contains 
all the Chromosomes in one file, is available on the Ensemble 
genome browser (http://ftp.ensembl.org/pub/release-105/fasta/
homo sapiens/DNA/Homo sapiens.GRCh38.dna.toplevel.fa.gz). 
Then by utilizing genome FASTA files from Ensembl to assemble 
the HISAT2 for creating the human index, the HISAT2 program was 
used. For aligning the sequence with the reference index, HISAT2 
is utilized. Instead of using SAM, many downstream programs now 
save alignments in the space-saving BAM format. The input is SAM 
(-S), and the output is BAM (-b). In BAM, you can read names or sort 
alignments by chromosomal coordinates (-n). 

Reads annotation
Reads can be positioned by using genomic annotation after 

they have been mapped to a reference genome. Counting reads 
per gene, transcripts, and exon can measure gene expression and 
offer new choices for quality control. Although HTSeq-count is a 
component of Galaxy for NGS data processing. HTSeq-count stores 
genome annotation and aligned reads in SAM/BAM format in a 
GTF file. Following the exons’ gene IDs in the GTF file, Htseq-count 
identifies the exons which where the reads overlap and the exon-
level numbers are organized [11]. This demands that every exon of 
a gene have the same gene ID.

Analysis of Differential Expression (DE)
There are numerous tools for RNA-seq differential expression 

analysis. On data with many dimensions, differential analysis, 
normalization, and visualization are performed using the DESeq2 
program. We used the DESeq2 tool to read the HTseq numbers 
and divide the data into healthy and sick groups. Using RNA-seq 
data, this tool determines the per-exon and per-gene read counts 
for certain genes. To test for differential expression, we used raw 
numbers and a discrete distribution model. In the end Annotate 
DESeq2/DEXseq was used to find the names of differentially 
expressed genes.

http://ftp.ensembl.org/pub/release-105/fasta/homo%20sapiens/dna/Homo%20sapiens.GRCh38.dna.toplevel.fa.gz
http://ftp.ensembl.org/pub/release-105/fasta/homo%20sapiens/dna/Homo%20sapiens.GRCh38.dna.toplevel.fa.gz
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Functional enrichment analysis
The pathways and functional enrichment analysis were carried 

out at the functional level using DAVID (version 6.8), (a database 
for annotation, visualization, and integrated discovery). At three 
primary levels-Cellular Components (CC), Biological Processes 
(BP), and molecular function-the functions of anticipated DEGs 
were examined (MF). Later, the ggplot2 (version 3.3.0) package, an 
R program devoted to data visualization, was used to visualize key 
paths. P0.05 was regarded as statistically significant in this context.

Results
The analysis of healthy and diseased samples which were 

fetched from the NCBI was done thoroughly. The mega data was 
then processed into fastq files to make it ready as input for BAM 
analysis. Samples were examined for low-quality readings and 
adaptor contents in order to improve the quality of the analysis 
results. Then samples were aligned with the human reference 
genome.

Differentially Expressed Genes (DEGs) identification
The analysis of the healthy and diseased samples which were 

fetched from the NCBI was done thoroughly. The mega data was 
then processed into fastq files to make it ready as input for SAM 
and BAM analysis. To map the samples with the reference human 
genome, high-quality reads from sample files were aligned with 
the reference genome. Later, the DeSeq2 tool of R was used to 
identify the DEGs based on log fold change (log FC), p-value, 
adjusted p-value, and base mean values. The term “disease” was 
used for diseased samples and the term “control” was used for 
normal samples. Differential gene expression analysis revealed 
a total of 387 down-regulated and 96 up-regulated genes (Table 
1) while those DEGs which do not meet the criteria of logFC, and 
p-value were considered non-significant genes and excluded from 
the analysis. Moreover, Bio-conductor packages of R were used 
to construct a volcano plot to make a clear difference between 
significant and non-significant DEGs (Figure 1).

Figure 1: A volcano graphic is used to represent differentially expressed genes. Left side shows the down-regulated 
genes, and the right side shows the up-regulated genes, while non-significant genes were represented with central 

black dots.

Table 1: Differential expressed genes.

Differential Expressed 
Genes (DEGs) Gene Name

Up-regulated genes (96)

SPAG17,HULC,EPM2A,DNAH8,FGF13,HMGA2,AL158055.1,Z82195.2,PDE10A,ROS1,CCDC141,TSTD3,
AL589740.1,LINC01446,KCNQ5,HFM1,NAALAD2,AC080079.2,AL033523.1,ADCY10P1,SATL1,FGFR1OP,
SLC6A5,KIF15,DACH2,UPRT,HHLA1,ZNF391,PARPBP,CHST9,AGTR1,SPANXA2OT1,UFL1AS1,LINC01140,
RRH,C4orf17,SIM1,AL691420.1,SYT10,CTAGE16P,C20orf197,AL445259.1,SYNPR,NLRP14,AL078602.1,
LINC00837,ELAVL2,AC107074.1,C21orf91OT1,VWC2L,F9,CDH12,CLDN18,FRG1FP,USP29,AC016925.3,
AL162253.2,AC099342.1,AC063923.1,FER1L6AS2,AL512658.2,AC091951.3,AC108935.1,LINC01538,

ADSL,AP000941.1,PCDH19,AC104763.3,AC092939.1,GDF6,AL356124.1,AP001442.1,PTGR2,AC073973.1,
MIR31HG,AC002458.1,GRIK2,RNU1-108P,DSG1-AS1,KIF2B,C6orf141,MTFR2,AL035446.2,AADACL2-AS1,

PGM5P2,AC098483.1,TEKT1,LINC01990,B3GAT2,AL353763.2,DKK1,FP236383.3,
STAT4,AC006971.1,SAMD3,AL080250.1
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Down-regulated genes 
(387)

 RPL37,RPL36,RPL35,RPL32,RPL31,RPL3,RPL29,RPL28,RPL27A,RPL27,RPL24,RPL23,RPL21P16,RPL19,
RPL18A,RPL18,RPL15,RPL14,RPL13A,RPL13,RPL12,RPL11,RPL10A,RPL10,RNY4,RNY3,RNU5B-1,RNU5A-1,

RNU4-2,RNU4-1,RNF11,RNA5SP74,RNA5SP429,RNA5SP389,RNA5SP370,RNA5SP355,RNA5SP350,RNA5SP298,
RNA5SP226,RNA5SP202,RNA5SP199,RNA5SP162,RNA5SP161,RNA5SP149,RNA5SP145,RNA5SP141,RNA5S9,RNA5S1,R

NA5-8SN3,
RNA5-8SN1,RN7SL674P,RN7SL5P,RN7SL4P,RN7SL3,RN7SL1,RHOA,RASSF2,RANBP3L,RACK1,RAC1,

RAB7A,RAB6A,RAB31,RAB1A,PURA,PTP4A2,PTN,PTMA,PTEN,PTBP3,PSME3,PSME1,PSMB4,PRRG3,PRPF8,
PRNP,PRKAR1A,PRDX6,PRDX3,PPP6C,PPP1CB,PPIA,PNRC1,PLEKHA6,PJA2,PHACTR2,PGAM1,PEBP1,PEA15,PDZD8,

PDCD4,PCNP,PCGF5,PABPC1,OMD,OIP5-AS1,OGN,OAZ1,NUDT21,NUCKS1,NPM1,NORAD,NOP53,NONO,NFIC,
NET1,NCOA4,NAP1L4,NAP1L1,NACA,MYL6,MTURN,MT-TP,MTRNR2L8,MTRNR2L12,MT-RNR2,MT-RNR1,MT-ND6,

MT-ND5,MT-ND4L,MT-ND4,MT-ND3,MTND2P28,MT-ND2,MT-ND1,MT-CYB,MT-CO3,MT-CO2,MTCO1P12,MT-CO1,MTCH1,
MT-ATP8,MTATP6P1,MT-ATP6,MT2A,MORF4L2,MORF4L1,MCL1,MBNL2,MARF1,MAP1B,MALAT1,MAF,LUM,

LSM14A,LRRC58,LIN7C,LGALS1,LEPR,LAPTM5,KLF9,KLF5,KLF3,KIF5B,KIF3B,KCTD12,JCAD,IGFBP5,IGF2,IFITM3,
IFITM2,HSPD1,HSPB1,HSPA8,HSP90B1,HSP90AB1,HSP90AA1,HNRNPH3,HNRNPA3,HNRNPA1,HLF,HIST2H2AC,

HIST1H4D,HIST1H4C,HIST1H4B,HIST1H2BC,HIST1H1E,HIST1H1C,HIPK3,HECA,H3F3B,GREM1,GPX4,GPX3,GPX1,
GNG12,GNAS,GLUL,GHITM,FTL,FTH1,FP236383.5,FOS,FMOD,FKBP5,FGL2,FCER1G,FAM210B,FAM107A,EZR,

EMP3,ELOB,EIF4H,EIF4G2,EIF4EBP2,EIF4B,EIF4A2,EIF3L,EIF3E,EIF1,EID1,EFEMP1,EEF2,EEF1B2,EEF1A1P5,
EEF1A1,DYNLL1,DUSP1,DSTN,DSP,DNAL1,DNAJA1,DHRS3,DAZAP2,CYBRD1,CYB5R3,CSDE1,CRTAP,CREBL2,

COX4I1,COL6A3,COL3A1,CNBP,CMPK1,CLU,CLTC,CLIC4,CLDN11,CKB,CIRBP,CHMP5,CGGBP1,CENPB,CD74,CCT7,
CCNI,CCND1,CBX5,CAVIN1,CAPRIN1,CANX,CALM1,CA11,C4orf3,BTF3,BSG,BRK1,BPTF,BNIP3L,BGN,BEX3,BDP1,BCYRN1,
B2M,ATP6V1E1,ATP5F1E,ATP5F1B,ATL3,ARPP19,ARHGAP5,ARHGAP21,ARF1,APOE,APOD,AP3S1,ANXA6,ANXA5,ANXA2,

ANP32B,AKT3,AHNAK,AHCYL2,ADIPOR1,ADD3,ACTR2,ACTG1,ACTB,AC116533.1,AC113935.1,AC073140.1,5_8S_rRNA

In volcano plots, all the dots on the right side represented the up-
regulated genes, whereas the dots on the left side indicated down-
regulated genes. Additionally, HULC was the most significantly 
overexpressed up-regulated gene, and gene RNA5SP202 was 
the most significantly down-regulated gene with the highest 
expression, as demonstrated in the Volcano plot of Log2 of Fold 
Change and -Log10 p-values. The volcano plot also displayed the 
other top significant genes, including ACTB, VWC2L, and ZFP36L2.

Enrichment analysis of DEGs
KEGG pathway and GO enrichment revealed the functional 

annotation of DEGs in the context of MF (Molecular Function), CC 

(Cellular Component), BP (Biological Process), and their associated 
KEGG pathways. Analysis of functional enrichment of the DEGs 
represented that in terms of BP, the genes were involved in oxidative 
phosphorylation, cytoplasmic translation, and negative regulation 
of ubiquitin-protein ligase activity (Figure 2). In terms of CC, genes 
were mainly concentrated in the ribosomal, focal adhesion, and 
cell-substrate adhesion (Figure 2). For the category of MF, the 
genes were enriched in cadherin binding, enzyme inhibitor activity, 
and translation regulator activity (Figure 2). KEGG pathway 
analysis demonstrated that genes were significantly concentrated 
in Parkinson’s Disease, Thermogenesis, Alzheimer’s Disease, And 
Proteoglycan in Cancer (Figure 2).

Figure 2: Analysis of GO enrichment. (a) Cellular Components (b) Molecular Function (c) Biological Processes (d) 
KEGG pathway analysis.
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Discussion
While there have been significant improvements in the 

treatment of Medulloblastoma in recent years, including surgery, 
Chemotherapy, and Radiation therapy, cancer remains difficult 
to treat and has a relatively high mortality rate. Additionally, the 
treatment of Medulloblastoma can have significant side effects 
and long-term consequences, such as cognitive and developmental 
delays. As a result, there is a continued need for research and 
development of more effective and less toxic treatments for 
Medulloblastoma. In our study, we utilized RNA sequencing and 
bioinformatics approaches to investigate the genes, signaling 
pathways, and proteins involved in a disease called MB. By 
analyzing healthy and diseased samples, we identified several 
DEGs, including 387 down-regulated and 96 up-regulated genes. 
The most significantly up-regulated DEG was HULC, and the most 
significantly down-regulated DEG was gene RNA5SP202. As part 
of our functional enrichment analysis, we also looked at the DEGs’ 
functional annotation in terms of Biological Processes, Molecular 
Functions, Cellular Components, and KEGG pathways. 

Our analysis revealed that the DEGs were involved in a 
variety of processes, including Oxidative Phosphorylation, 
Cytoplasmic Translation, Negative Regulation of Ubiquitin-
Protein Ligase activity, and Ribosomal and substrate adhesion. In 
terms of Molecular function, the DEGs were enriched in cadherin 
binding, enzyme inhibitor activity, and translation regulator 
activity. According to KEGG pathway analysis, the DEGs were 
significantly enriched in pathways associated to Parkinson’s 
Disease, Thermogenesis, Alzheimer’s Disease, And Proteoglycan 
in Cancer. Previous studies have identified CDK1, WEE1, CDK2, 
and CCNB1 as key genes in the development of Medulloblastoma 
[12,13]. In medulloblastoma, VMY-1-103, a new dansylated 
analogue of purvalanol B, has been discovered to interfere with 
the advancement of Metaphase via inhibiting CDK [14]. SiRNA or 
the drug MK-1775 can mediate the knockdown of WEE1, a kinase 
involved in the G2/M cell cycle, checkpoint control, and DNA 
replication during the S phase, to reduce medulloblastoma cell 
proliferation [15]. Inhibiting WEE1 with AZD1775 has also been 
shown to induce apoptosis in Medulloblastoma cells [16]. WEE1 
has been linked to Medulloblastoma cell Proliferation, growth, and 
metastasis [17]. High levels of MYC and CCNB1 expression have 
been identified as strong prognostic biomarkers for predicting 
relapse in Medulloblastoma patients [18]. CDK1 plays a significant 
role in neuroblastoma by partnering with CCNB1 to increase tumor 
cell survival [19,20]. CDK2 kinase activity has been suggested to be 
involved in cell proliferation, cell cycle progression, and Neuronal 
differentiation in medulloblastoma [21]. Targeted therapies have 
the potential to provide more accurate and personalized treatment 
for MB patients and may lead to better treatment outcomes 
and higher survival rates [22,23]. However, the development of 
targeted therapies for MB remains a challenge, as the disease is 
highly complex and exhibits significant Genomic Heterogeneity. 
This means that different molecular subtypes of MB may require 
different targeted therapies to be effectively treated. For example, 
the oncogene MYC is frequently altered in MB, and children with 

MYC-amplified MB often do not respond well to current treatment 
methods [8].

This highlights the importance of identifying targeted therapies 
that are specific to each molecular subtype of MB. In addition to 
the development of targeted therapies, research is also needed 
to identify new biomarkers that can be used to predict treatment 
response and monitor disease progression in MB patients. 
Identifying new biomarkers for MB could help to improve patient 
care by allowing doctors to monitor the effectiveness of treatment 
in real-time and adjust treatment plans as needed. However, the 
development of targeted therapies for MB remains a challenge, 
as the disease is highly complex and exhibits significant genomic 
heterogeneity. Further research is needed to fully understand the 
molecular mechanisms of MB and to identify the most effective 
targeted therapies for each molecular subtype. In addition, research 
is also needed to identify new biomarkers that can be used to 
predict treatment response and monitor disease progression in MB 
patients. Overall, MB is a complex and aggressive pediatric brain 
cancer that remains a significant challenge in the field of oncology. 
While progress has been made in the understanding and treatment 
of the disease, much more work is needed to improve patient 
outcomes and reduce the long-term impacts of MB.

Conclusion
The current body of research backs up a paradigm in which 

transcriptionally comparable tumors share clinical and molecular 
characteristics that will be valuable in the clinic. The discovery of 
molecular subgroups will almost certainly be critical in the design 
and execution of targeted medicines. Through this research, we 
identify the major genes that differ in how they are expressed in 
medulloblastoma. The study concluded that HULC is the highly up-
regulated gene, and RNA5SP202 is the highly down-regulated gene. 
The differentially expressed genes are functionally enriched genes.
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