An Alternate Form of the Integrated First-Order Rate Equation

Frank E Stary*
Department of Chemistry, USA

Abstract
Derivation of a first-order equation suitable for use in beginning energy science and chemistry courses is shown to be

\[A = A_o / 2^{t/t_{1/2}} \]

Where,

- \(A_o \) is the original amount of the sample
- \(A \) is the amount
- \(T \) is time t and
- \(t_{1/2} \) is the half-life

\(A_o \) is larger than \(A \)

Derivation of the Alternate Form
Radioactive processes and many chemical processes follow first order kinetics. The usual equations found in general chemistry textbooks are:

- a. \[\ln A/A_0 = kt \]
- b. Changing the rate constant to half-life, \(\ln 2 = k t_{1/2} \), where \(t_{1/2} \) is the half-life.
- c. Solving equation 2 for \(k \) and substituting into equation 1 the result is \(\ln A_0/A = (\ln 2)t/t_{1/2} \).
- d. Rearranging equation 3 gives \(A = A_o e^{(\ln 2)t/t_{1/2}} \) as indicated in [1].
- e. Since \(\ln 2 = 2 \), substitution into equation 4 yields \(A = A_o / 2^{t/t_{1/2}} \) the Alternate Form of the Integrated first-order rate equation

Our students have found equation 5 to be relatively easier to use than equations 1 and 2. In equation 5, by dividing the time by the half-life, they get a number. On their calculators, they enter the number 2, \(y^2 \), the number and press=The result is divided into \(A_o \) giving the value for \(A \). For radioactive processes, the values of \(A_o \) and \(A \) may be in mass, such as grams, or activity in Becquerel’s (counts/second). For chemical processes, units for \(A_o \) and \(A \) may be written as rates, such as molarity/second.

References

For possible submissions Click below: