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Abstract

Förster resonance energy transfer (FRET) has emerged as a pivotal biophysical tool in medical 
research, enabling high-sensitivity detection of molecular interactions and dynamic processes. Recent 
technological advancements have significantly expanded FRET applications in cell biology and drug 
discovery, driving profound insights into disease mechanisms and therapeutic innovation. Despite its 
transformative potential, FRET implementation faces persistent challenges including signal intensity 
limitations, background noise interference, and experimental design constraints. This review synthesizes 
cutting-edge developments in FRET technology, critically evaluates its current medical applications, 
addresses key methodological challenges, and outlines future research trajectories to advance biomedical 
investigation.
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Introduction 
FRET technology leverages distance-dependent energy transfer between fluorescent 

molecules (donor and acceptor) to detect biomolecular interactions with nanometer-
scale spatial precision (<10nm). This technique has become indispensable for monitoring 
real-time cellular signaling, elucidating disease pathways, and facilitating high-throughput 
drug screening. Recent innovations have broadened FRET’s utility across diverse contexts 
from mapping single-molecule dynamics to profiling network-level interactions in complex 
biological systems [1]. Notable progress includes FRET-based monitoring of intracellular 
signaling cascades that reveal adaptive cellular responses to stimuli [2], identification 
of pathogenic protein interactions in cancer and neurodegenerative disorders [3], and 
accelerated drug candidate evaluation through multiplexed screening platforms [4]. This 
review examines fundamental principles and emerging applications of FRET technology 
across medical domains, highlighting its transformative potential in addressing critical 
biomedical challenges.

Fundamental principles and biomedical significance of FRET 

A.	 Mechanism and Requirements FRET efficiency (E) follows Förster’s equation E = 
1/[1+(R/R₀)⁶], where R represents donor-acceptor distance and R₀ denotes the 
characteristic distance at 50% energy transfer. Optimal FRET occurs when spectral 
overlap exceeds 30%, dipole orientations are favorable, and interfluorophore distance 
remains within 1-10nm. These characteristics position FRET as a powerful “molecular 
ruler” for quantifying biomolecular interactions1.

B.	 Advantages in Biomedical Research FRET provides unparalleled capabilities for live-
cell dynamic monitoring with millisecond temporal resolution and single-molecule 
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sensitivity. Its compatibility with fluorescence lifetime imaging 
microscopy (FLIM) enables background-free quantification 
[5,6]. Recent advances including time-resolved detection and 
multiphoton excitation have further enhanced signal-to-noise 
ratios (>500:1) and tissue penetration depth (up to 800μm) 
[7].

FRET in cell biology 

Dynamic monitoring of cellular signaling: Integration of 
FRET with two-photon fluorescence lifetime imaging microscopy 
(2P-FLIM) enables spatiotemporal mapping of kinase activation and 
second-messenger dynamics in thick tissues [7]. For instance, Rac1 
GTPase activity gradients in migrating cells have been quantified 
using EGFP-mCherry FRET biosensors with subcellular resolution 
(±0.1 FRET efficiency units) [8-20]. 

Protein interaction analysis: Dual-labeling strategies with 
fluorescent proteins (e.g., CFP-YFP) reveal protein complex 
stoichiometry and dissociation constants in vivo. This approach 
has identified allosteric changes in β2-adrenergic receptors within 
500ms of agonist stimulation.

Molecular diagnostics innovation: smFRET, a Single-
molecule resolution achieves 10-18M detection limits for nucleic 
acid dynamics and CRISPR-Cas activity monitoring [21,22]. TR-
FRET, Europium chelate donors with time-gated detection reduce 
autofluorescence interference by 30-fold for cytokine storm 
diagnostics [23]. Quantum Dot (QD)-FRET, Water-soluble CdTe/
ZnS core-shell QDs functionalized with 3-mercaptopropionic acid 
exhibit quantum yields >80% for quantitative metabolite sensing 
[24].

FRET in drug discovery

A.	 Target Validation TR-FRET binding assays screen interactions 
at physiological concentrations, outperforming ELISA in 
precision and throughput [25].

B.	 Screening and Mechanism Profiling Advanced FRET biosensors 
enable real-time drug activity assessment: Genetically encoded 
mNeonGreen-HaloTag systems track receptor dimerization 
kinetics Carbon nanotube-QD hybrids detect serum PD-L1 
at 0.1pM in 5 minutes Lanthanide nanoparticle probes guide 
neurosurgical interventions with <50μm precision [26,27]. 
Integrated genotyping (e.g., LightSNiP + TR-FRET) identifies 
DPYD 6 variants predictive of fluoropyrimidine toxicity [28].

Conclusion
FRET is undergoing rapid development in medical applications, 

extending its influence to critical domains including cell biology and 
drug discovery. Through non-invasive means, FRET enables real-
time monitoring of molecular interactions and dynamic processes 
within cells, significantly advancing our understanding of biological 
mechanisms. However, as FRET gains widespread adoption, 
researchers face challenges in balancing divergent perspectives. On 
the one hand, studies demonstrate FRET’s superiority in monitoring 
molecular interactions and dynamic changes, providing high-
resolution, real-time intracellular information. On the other hand, 

concerns exist regarding its accuracy in complex biological systems, 
where signal interference and background noise may compromise 
result reliability. To reconcile these views, future research must 
prioritize standardization and optimization of FRET technology for 
precise application across diverse biological environments.

Continual advancements in FRET bring both challenges 
and opportunities. Innovations in probe development, imaging 
technology, and data analysis methods are expanding FRET’s 
potential. These improvements will enhance its value in basic 
research and accelerate clinical translation for early disease 
diagnosis and personalized therapies.

Future studies should persistently explore novel FRET 
applications and integrate it with complementary bioimaging 
technologies to further medical research. Through interdisciplinary 
collaboration, researchers can achieve comprehensive 
understanding of complex biological systems, providing robust 
support for clinical practice. In summary, while FRET faces 
significant challenges, its promising future in medicine holds 
undeniable potential to profoundly impact biomedical research. 
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