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Introduction
Early diagnosis of cancer is crucial, but tumors are difficult to prevent and treat. As a key 

immune molecule, TCR can recognize tumor neoantigens and trigger immune responses [1,2], 
making it an ideal tumor biomarker. However, the human TCR repertoire exhibits significant 
individual variability and extreme diversity, with a vast number of unique sequences, low 
inter-individual TCR overlap, and specificity for HLA and antigens. These characteristics 
complicate the quantitative characterization of tumor immunity.

The diversity of the TCR repertoire is highly correlated with pathological states, and 
studies have extensively explored tumor associated TCR diversity. However, sheer diversity 
alone does not consistently correlate with effective tumor immunity: while higher TCR 
diversity generally indicates a robust anti-tumor immune capacity, predicting better 
therapeutic responses and outcomes [3-10], exceptions exist [11-13]. The specific binding 
of TCRs to antigen-MHC complexes is crucial for monitoring immune-tumor interactions. 
Recent studies have begun to explore experimental techniques and predictive models for TCR 
specificity, such as GLIPH [14], Panpep [15], and PMTnet [16]. Current research efforts have 
focused on analyzing TCR diversity or specificity alone.

It is hypothesized that an effective diversity metric combining diversity and specificity can 
more accurately quantify the role of TCRs in tumor immunity (Figure 1). Effective diversity 
of TCRs is defined as the diversity of specific TCRs that can successfully recognize a specific 
antigen and elicit a positive immune response [17]. Based on the hypothesis that structural 
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similarity determines functional similarity, a TCR structural 
similarity clustering algorithm was utilized to construct the TCR 
effective diversity index. The predictive performance of this index 

in distinguishing between cancer patients and healthy individuals 
was analyzed. The results validated that the effective diversity index 
can more accurately measure the body’s anti-tumor immune levels.

Figure 1: Schematic Diagram of TCR Diversity, Specificity, Efficacy, and Effective Diversity.
Note: A represents TCR diversity; B represents TCR specificity; C represents TCR efficacy; D represents TCR effective 
diversity. Green cells - T cells, yellow cells - antigen-presenting cells; TCR - different colors represent different TCRs; 

antigen peptide - different colors represent different antigen peptides; MHC - different colors represent different 
MHCs; × indicates antigen not recognized by TCR.

Methods and Result
The TCR diversity index is calculated at the amino acid sequence 

level using commonly employed metrics such as Shannon entropy, 
Gini-Simpson index, D50, and Pielou, as shown in formulas 1-4.

Shannon Entropy:

1
N
i i iH p In p== −Σ      (1)

In these formulas, H represents Shannon entropy, N denotes the 
total observed number of clonotypes, also referred to as richness, 
and Pi represents the relative frequency of the i-th TCR clonotype.

Gini-Simpson Index: 
2

11 N
i iD P== − Σ       (2)

In the formula, D represents the Gini-Simpson diversity index, 
N denotes the total observed number of clonotypes, also referred 
to as richness, and pi represents the relative frequency of the i-th 
TCR clonotype.

D50:

50
CD N=     (3)

In the formula, C represents the number of dominant clonotypes 
that account for 50% of the total sequences, and N denotes the total 
observed number of clonotypes.

Pielou:

( )

H
J

In n
=     (4)

In the formula, H represents Shannon entropy, and N denotes 
the total observed number of clonotypes.

Based on the reasonable hypothesis that TCR structural 
similarity largely determines functional similarity, we constructed 
the TCR effective diversity index (EDI) using a specificity clustering 
model:

( ) ( )( )2
1...i n i i i iEDI n S T LN S T== × −Σ × ×   (5)

where n represents the number of clusters; Si represents the 
proportion of TCR sequences in the i-th cluster relative to the total 
number of TCR sequences; Ti represents the proportion of observed 
TCR clonotypes in the i-th cluster relative to the total number of 
clonotypes.

In Formula 5, the clustering algorithm uses GLIPH [14], an 
algorithm for identifying groups of T-cell receptors (TCRs) with 
similar functional properties. Compared to diversity indices, the 
effective diversity index comprehensively reflects both specificity 
and diversity.

We analyzed and compared the classification performance 
of individual diversity indices and the effective diversity index in 
distinguishing between healthy individuals and cancer patients 
using data from 83 healthy individuals and 87 cancer patients in 
Data 1 [1], and 20 healthy individuals and 16 colorectal cancer 
patients in Data 2 [4]. Among the diversity indices, Shannon 
entropy exhibited the best classification performance, while D50 
showed the weakest classification performance. The AUC values of 
the effective diversity index were higher than those of the diversity 
indices (Table 1). This indicates that the single effective diversity 
index is effective for cancer classification and performs better than 
the diversity indices.
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Table 1: AUC Values for TCR Diversity Indices and Effective 
Diversity Index Classification in Data 1 and Data 2.

Index Types AUC Values in 
Data 1

AUC Values in 
Data 2

TCR Diversity 
Indices

Shannon 0.8061 0.5844

Simpson 0.6572 0.5344

D50 0.6034 0.5125

Pielou’s index 0.6164 0.5531

Effective 
Diversity Index EDI 0.915 0.7281

We constructed Random Forest (RF) classifiers based on 
diversity indices, and a combination of both types of indices. 

We divided the dataset into a training set and a test set, which 
accounted for 80% and 20% of the total data, respectively. The 
RF classifier is trained on the training set and its performance is 
evaluated on the test set. The results show that the RF classifier 
incorporating the combined indices demonstrated the best 
classification performance, indicating that the inclusion of effective 
diversity indices improved classification performance (Table 2). 
This suggests that TCR effective diversity indices are effective 
for cancer classification, enhancing classification performance. 
Furthermore, feature importance rankings (Figure 2) show that 
effective diversity indices are the most important classification 
factors in the constructed RF model, significantly improving the 
classifier’s performance.

Table 2: Comparison of RF model classification performance based on different indices.

Data RF Model Accuracy Recall F1 Score AUC

Data 1
TCR Diversity Indices 0.8529 0.7857 0.8148 0.9179

Composite Indices 0.8824 0.9286 0.8667 0.9286

Data2
TCR Diversity Indices 0.75 1 0.6667 0.8333

Composite Indices 0.75 1 0.6667 0.9167

Figure 2: RF Feature Importance Analysis.
a) Ranking of RF feature importance scores for Dataset 1. 
b) Ranking of RF feature importance scores for Dataset 2.

Conclusion
Numerous studies on TCR diversity and specificity have 

demonstrated their significant roles in tumor immunity research. 
However, most of these studies analyze diversity or specificity in 
isolation. In tumor immunity, diversity and specificity are often 
interrelated, and their combined effect needs to be validated 
through efficacy. TCR diversity does not distinguish between 
specific and non-specific TCRs, and the role of non-specific TCRs 
in diversity is minimal. While some tumor therapy studies show 
a correlation between high diversity and better prognosis, and 
low diversity levels with poorer prognosis, there are exceptions. 
Therefore, the diversity that exerts positive immune effects must be 
effective diversity; if diversity lacks efficacy, it still fails to achieve 
its purpose.

The comprehensive analysis of TCR diversity, specificity, 
and effectiveness can provide a more accurate understanding 
of the immune system’s function and improve strategies for the 
prevention, diagnosis, and treatment of immune-related diseases. 
The TCR effective diversity index, constructed by combining 
structural similarity expression of specificity with diversity 
quantification, to some extent reflects effective diversity. If the 
TCR effective diversity is sufficiently high, T cells can recognize a 
sufficient number of tumor neoantigens, thereby increasing the 
coverage and efficiency of the immune system and inhibiting tumor 
occurrence and development. The TCR effective diversity index is 
effective for cancer classification and outperforms diversity indices. 
Preliminary validation has shown that the effective diversity index 
is a better quantitative measure of the body’s anti-tumor immune 
level.
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However, inferring TCR antigen specificity based solely on TCR 
sequences remains challenging. It may be feasible to construct a 
TCR effective diversity index based on receptor-ligand binding by 
incorporating TCR-antigen affinity prediction models. Nevertheless, 
the high false positive rate of current TCR-antigen affinity models 
is a significant issue that needs to be addressed. Additionally, a 
more refined effective diversity calculation model must consider 
the impact of non-linear factors such as immune evasion and the 
synergistic effects of various cell types. These issues require further 
research and exploration.

With the ongoing development and refinement of single-cell 
TCR sequencing and TCR-pMHC structure prediction technologies 
[18,19], TCR effective diversity is expected to become an important 
tool for cancer immune monitoring and prognosis prediction in the 
future.
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