

Main Temperature Dependent Parameters of the Exponential Absorption Spectrum of a-Si: H

Ikramov RG, Nuriddinova MA, Muminov KhA*, Umarov SS and Sultonov BQ

Namangan State Technical University, Uzbekistan

RDMS Research & Developmental Voltament Sciences

ISSN: 2576-8840

*Corresponding author: Muminov KhA, Namangan State Technical University, 12, Yangi Namangan, Namangan 160115, Uzbekistan

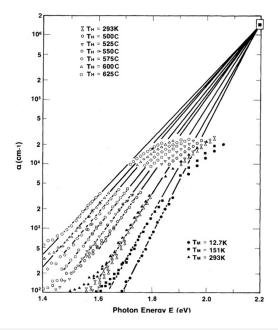
Submission:

☐ October 24, 2025 **Published:**
☐ October 31, 2025

Volume 22 - Issue 3

How to cite this article: Ikramov RG, Nuriddinova MA, Muminov KhA*, Umarov SS and Sultonov BQ. Main Temperature Dependent Parameters of the Exponential Absorption Spectrum of a-Si: H. Res Dev Material Sci. 22(3). RDMS. 001040. 2025. DOI: 10.31031/RDMS.2025.22.001040

Copyright@ Muminov KhA, This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use and redistribution provided that the original author and source are credited.


Abstract

In this work, the temperature dependence of the key parameters determining the exponential optical absorption coefficient spectra of hydrogenated amorphous silicon (a-Si: H) has been investigated. The study is based on both experimentally obtained values and the results derived from theoretical calculations of the exponential absorption spectrum. Using these results, the temperature dependence of the main parameters governing the exponential absorption spectrum of a-Si: H has been analyzed.

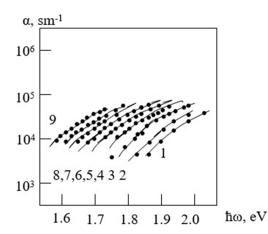
Keywords: Hydrogenated amorphous silicon (a-Si: H); Exponential optical absorption coefficient spectra; Temperature; Energy width of the mobility gap; Parameters determining the curvature of the exponential tails of the valence and conduction bands

Introduction

In the work [1], experimentally determined values of the temperature dependence of the spectra of interband and exponential optical absorption coefficients of amorphous hydrogenated silicon (a-Si: H) are presented (Figure 1). The same figure shows the experimentally determined values of the temperature dependence of the spectra of the interband and exponential optical absorption coefficients for a-Si: H films obtained using the same technology but subjected to annealing for 30 minutes in the temperature range of 400-600 °C. It is shown that the Urbach focus for exponential absorption spectra is located at the point $E_o\approx 2.2 \, \text{eV}$ and $\alpha\approx 1.5*10^6 \, \text{sm}^{-1}$.

Figure 1: Temperature dependence of experimentally determined interband and exponential absorption spectra of unannealed and annealed a-Si: H in [1].

In work [2], the following expression was obtained for the exponential absorption spectrum using the theoretical method of the Davis-Mott approximation from the Kubo-Greenwood formula:


$$\alpha_{2}(\hbar\omega) = \frac{B}{(\beta_{2} - \beta_{1})\hbar\omega} \exp(\beta_{1}(\hbar\omega - E_{g}) \left[1 - \exp(\beta_{2} - \beta_{1}) \hbar\omega - E_{g}) \right]$$
 (1)

In work [3], the following expression was obtained for the interband absorption spectrum using a theoretical method based on the Davis-Mott approximation from the Kubo-Greenwood formula:

$$\alpha_{2}(\hbar\omega) = \frac{B}{4\hbar\omega E_{g}} \left[2(\hbar\omega - E_{g})\sqrt{E_{g}\hbar\omega} - (E_{g} - \hbar\omega)^{2} \arctan\left(\frac{E_{g} - \hbar\omega}{2\sqrt{E_{g}\hbar\omega}}\right) \right]$$
 (2)

Results and Discussion

To calculate the interband absorption spectrum from expression (2), it is necessary to determine the parameters B and E_g in this formula. Considering B and E_g in formula (2) as fitting parameters, we fit the calculated results obtained from this formula to the experimental data taken for the interband absorption spectrum, presented in Figure 1. The agreement between the experimental and calculated results from formula (2) (Figure 2, lines) for B and E_g is presented in Table 1.

Figure 2: Temperature dependence of the interband absorption spectrum. Points are the experiment, lines are the results obtained from formula (2). Not annealed a-Si: H, 1-T=12.7K, 2-T=151K, 3-T-293K, Annealed a-Si: H 4-T=773K, 5-T=798K, 6-T=823K, 7-T= 848K, 8-T=873K, 9-T=898K.

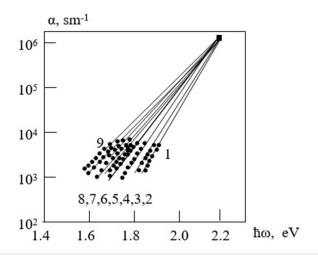
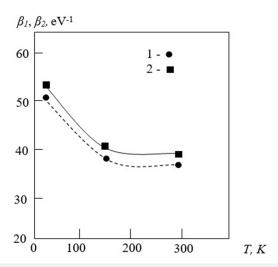

To determine the values of β_1 and β_2 , which are considered as fitting parameters, in formula (1), the values for B and E_g are obtained from Table 1, the obtained results of fitting to the experimental data are presented in Figure 3, and the values of β_1 and β_2 in Table 2. Figures 4 & 5 show the dependences of β_1 and β_2 on temperature for unannealed and annealed a-Si: H samples.

Table 1:

Nº	T, K	E _g , eV	B*10 ⁻⁵ , sm ⁻¹
1	12.7	1.861	3.647
2	151	1.841	3.745
3	293	1.793	3.861
4	773*	1.673	2.568
5	798*	1.659	2.652
6	823*	1.651	2.875
7	848*	1.642	2.988
8	873*	1.634	3.022
9	898*	1.626	3.324


Table 2:

Nº	T, K	β ₁ , eV ⁻¹	β ₂ , eV ⁻¹
1	12.7	50.6	53.7
2	151	39.8	40.9
3	293	37.7	39.2
4	773*	61.7	64.9
5	798*	49.1	52.8
6	823*	43.6	47.5
7	848*	37.3	39.1
8	873*	31.7	34.9
9	898*	28.4	31.3

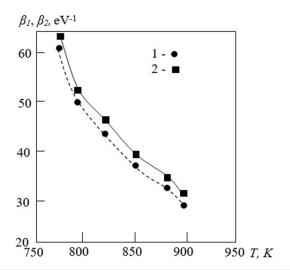


Figure 3: Temperature dependence of the exponential absorption spectrum. Points are the experiment, lines are the results of calculations using formula (1). The square point is the Urbach focus. Not annealed a-Si: H, 1-T=12.7K, 2-T=151K, 3- T=293K, Annealed a-Si: H 4-T=773K, 5-T=798K, 6-T=823K, 7-T= 848K, 8-T=873K.

Res Dev Material Sci Copyright © Muminov KhA

Figure 4: Temperature dependence of the parameters determining the curvature of the exponential tails of the conduction and valence bands of unannealed a-Si: H: $1 - \beta_2$ for the tail of the conduction band; $2 - \beta_1$ for the valence band.

Figure 5: Temperature dependence of the parameters determining the curvature of the exponential tails of the conduction and valence bands of annealed a-Si: H: $1 - \beta_2$ for the tail of the conduction band; $2 - \beta_1$ for the valence band.

The determined values of these parameters are presented in Table 2.

The table shows that with increasing temperature, the exponential tails of the valence and conduction bands increase. After annealing the a-Si: H samples, the exponential tails of the valence and conduction bands also continue to increase. Moreover, for newly fabricated a-Si: H samples, the β_1 and β_2 values are strongly correlated at low temperatures. As the temperature increases, this dependence weakens. During annealing of the a-Si: H samples, the β_1 and β_2 values increase.

Conclusion

Thus, in this work, the temperature dependence of the main parameters that determine the optical absorption spectra of amorphous hydrogenated silicon was studied using a theoretical method. It was found that the exponential tails of the valence and conduction bands increase with increasing temperature. It was also found that the exponential tails of the valence and conduction bands of annealed a-Si: H samples increase with increasing temperature.

It was shown that the β_1 and β_2 values in unannealed a-Si: H samples exhibit a strong dependence at low temperatures. This dependence was shown to weaken as temperature increases. The Urbach focus for annealed and unannealed a-Si: H samples were found to be at $E_g = 2.2 \text{eV}$ and $\alpha = 1.5 \times 10^6 \text{sm}^{-1}$. Annealing of a-Si: H samples lead to an increase in the β_1 and β_2 values.

References

- Cody GD, Tiedje T, Abeles B, Brooks B, Goldestein Y (1981) Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Physical Review Letters 47(20): 1480-1483.
- Zainobidinov S, Ikramov RG, Zhalalov RM (2011) Urbach energy and tails of the density of states of amorphous semiconductors. Journal of Applied Spectroscopy 78(2): 223-227.
- Zainobidinov S, Ikramov RG, Zhalalov RM, Nuritdinova MA (2011)
 Distribution of electron density of states in allowed bands and interband
 absorption in amorphous semiconductors. Optics and Spectroscopy
 110(5): 762-766.

Res Dev Material Sci Copyright © Muminov KhA