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Introduction
Plastic consumption has exponentially grown during the last decades. Microplastics, 

MPs, are mainly formed by the fragmentation of large plastic materials [1], and an important 
negative contribution arises from textile industry [2]. Evidence shows that MPs have a 
negative impact on marine and aquifer environments. Typically, high-density MPs sink and 
accumulate as sediments, while the low-density one’s float. Traditionally, wastewater and 
drinking water treatment systems are based on sedimentation, filtration, and on biological 
treatments, and the existent approaches to minimize MPs dissemination are clearly deficient. 
In the case of wastewater, waste-water treatment plants only minimize the problem trapping 
only larger size particles, while smaller ones remain in oxidation ponds or sewage sludges, 
or even in the treated effluent. Meanwhile, to evaluate the efficiency of the treatment 
procedures, the presence and quantification of MPs in wastewater and drinking water is vital. 
Classic procedures for MPs detection and quantification are still quite laborious, and usually 
involve several steps and expensive equipment. So, there is an urgent need for systems that 
can quickly evaluate the existence of MPs in wastewater and drinking water. 

Microplastics detection/quantification: traditional vs recent methodologies

For many years, scientists have been trying to deal with the complexity of MPs detection and 
quantification, including the probability of getting results that are either false positives or false 
negatives. As stated, conventional MPs detection/quantification methodologies are complex 
and time consuming. Traditional analytical techniques for MPs evaluation are presently divided 
into three main groups [3]: 1) visual inspection methods - selection and classification by color 
or size of MPs particles is made using naked eye or microscope images (such as light reflected 
or Scan electron microscopes); 2) thermal analysis methods, such as Gas chromatography/
mass spectrometry for pyrolysis, thermal extraction desorption-gas chromatography-mass 
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spectrometry (which combines thermogravimetric analytical solid 
phase extraction and thermal desorption-gas chromatography-
mass spectrometry), or calorimetry with differential scanning.; 3) 
spectral analysis techniques like Raman spectroscopy. The inelastic 
scattering of light is the foundation of the vibrational method called 
Raman and Fourier Transform Infrared spectroscopy.

More recently, efforts have started on the use of electrochemical 
methods, particularly on Electrical Impedance Spectroscopy, EIS, 
ideal for creating transportable devices with a faster response time, 
enabling real-time water sample monitoring [4]. In EIS, impedance 
between a pair of electrodes is measured at diverse frequencies. 
When different particles are present between the electrodes, 
they change the measured complex impedance according to their 
relative permittivity [5]. Consequently, impedance changes at high 
frequency reflect both the material properties and the size of the 
particles, reason why measurements are conducted both at high 
and low frequencies (at low or zero frequency, the impedance 
change is proportional to the particles volume). Nevertheless, this 
is a recently “born” approach and, consequently, literature reports 
are scarce, but still, this technique is highly promising. For instance, 
Meiler et al. [6], combined EIS with machine learning (support vector 
machines, SVMs) for detecting microplastics: electrical measures 
were carried out in static water samples containing different plastic 
concentrations in a cylindrical measuring cell, in the frequency 
range from 20Hz to 2MHz (prepared samples, contained plastic 
mass fractions varying from 0 to 10g in steps of 1g). The plastics 
tested were polypropylene, PP, and a polyolefin, PO, a mixture of 
different plastics, mainly consisting of low-density polyethylene. 
The classification task, consisting of distinguishing different plastic 
materials and particle sizes, was achieved with a success accuracy 
of over 98%. They also conducted measurements at 2MHz with 
water flows carrying microplastic particles of different materials 
and sizes, which served to investigate the dynamic capabilities of 
the measurement method: for this case the classification accuracy 
achieved was of 85%. 

Another dynamic approach was conducted by Colson and 
colleagues [7]. In a rectangular tube with a pair of measuring 
electrodes, they demonstrated the use of an EIS based flow-
through sensing procedure, for the identification of microplastics 
directly in water. They were able to quantify polyethylene MPs’ 
particles based on their dimension (sizes ranges of 212-250, 300-
355, 425-500, 500-600, 600-710, and 850-1000 μm, were used in 
the experiments). Microplastics were reliably detected, sized, and 
differentiated from biological materials, with a false positive rate 
for the misidentification of the biological material as plastic of 1%. 

Conclusion
Literature reports show that EIS can be used as a fast, portable, 

low-cost, and efficient method to detect and estimate microplastic 
particles. Thus, the perspectives regarding its usage are high, even 
if the efforts have just begun. The evaluation of the acidity of the 
water, or the use of coated electrodes, are parameters needed to be 
evaluated in the future, which might influence the sensitivity and 
consequent development of these sensors.
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