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Introduction
An automobile is an extremely complex product, with about 7000 parts. Although it 

is preferable to use the greatest quality and reliability methods during the development, 
manufacturing, and assembly stages of a product, unanticipated failures do happen during 
warranty periods, costing automakers billions of rupees a year in warranty claims. Programs 
to lower warranty costs are highly prioritized in these industries. Teams from many industries 
collaborate to meet objectively set goals for reducing warranty costs, which are frequently 
based on the warranty claims of cars from prior model years. Forecasts are crucial because if 
they are much higher than actual repairs or complaints, it could lead to needlessly expensive 
design, production, or service actions. 

However, suppose they are much lower than the actual repairs or complaints. In that 
case, there may be a false sense of security that the year-end targets for warranty returns 
would be met, which could result in higher-than-expected warranty expenses. Usually 
completed after the year’s first quarter, forecasting provides a prognosis nine months in 
advance. These forecasts vary in scope from subassemblies like turbochargers, torque 
converters, and pumps to big assemblies like engines and transmissions. Now and then, a 
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Abstract

The current task involves putting management techniques into place to lower warranty costs and estimate 
warranties using truncated data sets for claims that are available for passenger car steering movement 
that is excessive at the time of repair. The idea is that while repairing a device during its warranty period 
in response to a customer’s claim, keeping track of the number of claims and their frequency aids in 
identifying the product’s main issues. Seven quality control instruments were provided with Analogously, 
the Plan-Do-Check-Act cycle steps improve issue solving. A management technique called the Augmented 
Plan-Do-Check-Act cycle aids in identifying potential reasons for steering movement resistance. The 
primary reason for the harsh steering movement is the Prevailing Torque Type nut’s wear out, which also 
affects the valve body’s axial motion and creates friction. Dealers have first-time failure data going back 
five months, which can be used as a data set for warranty projections. The Monthly In-Service (MIS) of 
the product is compared with repair per thousand (R/1000), cumulative hazard rate, and cost per unit 
(CPU) for each manufacturing month. The Reliasoft statistical analyser’s Synthesis 9 software was used 
to analyse the data set and forecast the warranty. The data was organized by the month of manufacturing 
and the month of the dealer’s first claim. Additionally, synthesis 9 makes it easy to analyse the product’s 
reliability; Weibull distribution forecasts warranty returns for the following six months, which indirectly 
indicates warranty cost, which must be applied at the time of product sale. It also helps to maintain 
minimum variance during analysis. It was determined that in order to reduce warranty costs, the Plan-
Do-Check-Act cycle should be implemented as a management technique during the product development 
phase. In terms of warranty cost analysis, or forecasting, the Weibull distribution is a statistical tool that 
helps to improve product warranties by assessing future warranty claims and their likely costs during the 
development stage.

Keywords: Warranty; Forecasting; CPU; P-D-C-A; Reliability
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significant consumer concern like fluid leaks, engine sound, low 
power, difficult steering, etc. is also directly addressed. In addition 
to assisting vehicle engineers in optimizing their approaches for 
reducing warranty costs through design, manufacture, or servicing, 
a reliable forecasting technique also helps the business prepare to 
pay any unused warranty costs. Most businesses want to give their 
clients the highest-quality goods possible. The majority of these 
initiatives are focused on research and development. The research 
explores the profitability and pricing strategy of complimentary 
extended warranties, emphasizing the influence of customer risk 
attitudes on the success of this warranty model. It also discusses 
the importance of online registration in attracting customers to 
avail of the extended service, showcasing how manufacturers can 
benefit from customer information for targeted marketing and 
product improvement. The research also suggests future research 
directions, such as considering dynamic post-purchase decision 
processes and customer preferences for product replacement, to 
enhance the effectiveness of warranty policies. Product quality is 
nearly entirely established once drawings and specifications are 
finished Reliability Analysis and Prediction with Warranty Data and 
production processes are chosen, according to Wu [1]. 

The production engineers are then limited in their ability to 
enhance product quality. The study introduces a novel fuzzy system 
integrated with a genetic algorithm to optimize profit and minimize 
waiting time by analysing the impact of sales price and warranty 
length on customer demand in a service centre, showcasing 
effective decision-making in industrial engineering applications. 
Numerous tasks are carried out during the development stage, such 
as robust design trials, design verification planning and reporting, 
concept/design failure mode and impacts analysis, and so on. In lab 
life testing, the efficacy of these efforts in producing dependable 
and durable goods is frequently assessed. A car is an extremely 
complex product since it has hundreds of pieces and interactions 
between them. It turns thorough testing and analysis into an 
unmanageably large, if not impossible, undertaking at the stages of 
product development, manufacture, and assembly. Therefore, it is 
not uncommon for there to be an unanticipated lack of quality and 
reliability once the car is put on the market, which would result in 
expensive warranty expenses. 

When evaluating the success of product development, 
manufacture, and assembly, it is common to look for issues with 
quality and reliability that arise after the vehicle is put into service. 
The following definition of reliability has been used historically [2]. 
The likelihood that a piece of machinery, equipment, or a system 
will function flawlessly for a predetermined amount of time under 
predetermined circumstances. The term given above more closely 
pertains to laboratory testing, when test conditions are more 
precisely defined. Nevertheless, it’s possible that the item’s listed 
conditions differ from the real ones faced when using it in the 
field. A production inventory model integrating carbon emission 
control and warranty policy, utilizing meta-heuristic algorithms 
and c-r optimization techniques for optimal decision-making. Key 
factors include interval-valued parameters, defective production 
considerations, and suggestions for model enhancements to 

address time-dependent production rates and green credentials 
[3]. 

The goal is to determine how a Two-Dimensional Warranty 
period for remanufactured products using the sensor information 
about the age and usage of each and every. End-Of-Life product 
on hand to meet product, component and recycled material 
demands while minimizing the cost associated with warranty and 
maximizing remanufacturer’s profit. The main objective was to 
extend the product life cycle by producing remanufactured products 
and providing a Two-Dimensional Warranty policy for end-of-life 
products in order to help change the customer perspective towards 
remanufactured products’ quality and to reduce the environmental 
burden [4].

Under a renewing policy, whenever an item fails within the 
warranty period, it is replaced by a new identical one, and the new 
replacement is attached with a new warranty; while the repair 
or replacement of a failed item protected by a non-renewing 
warranty does not alter the original warranty. The existing studies 
on warranty cost modelling and analysis focus predominately on 
renewing free replacement warranty, non-renewing free repair/
replacement warranty, and hybrid or combination warranty, among 
others [5].

For instance, the fact that users might utilize a steering wheel 
assembly as a handle to enter the vehicle may not be covered by the 
conditions provided for laboratory testing. The term encountered is 
more suited to use instead of the word mentioned in the definition 
of reliability, according to Meeker [6]. Nevertheless, it is nearly 
impossible to duplicate possibly every usage condition found 
during laboratory testing. As a result, design engineers cannot fully 
rely on the results of laboratory life testing to provide feedback and 
confidence regarding field performance. It has been shown that 
compared to laboratory data, field data offer more trustworthy 
information regarding the distribution of life [7]; [8]. Actual usage 
patterns and the cumulative effects of environmental exposures 
are captured by field data, which are challenging to replicate in 
a lab setting. Fleets of production cars are occasionally used by 
automakers to get quick feedback on the type of field failures [9]. 
The modest number of cars in the fleet provides easily available 
data, making the modelling and analysis of such data not a major 
challenge [10]. But in automakers, warranty data is the primary 
source of field data access. Therefore, in order to get more precise 
design feedback, engineers and designers working on current and 
future model cars also anticipate receiving warranty data. Using 
warranty data, engineers and Six Sigma black belts can find ways to 
reduce warranty costs through suitable design, manufacturing, or 
service fixes. Using a parameter diagram, Figure 1 illustrates some 
of the key elements that affect a new car’s total warranty cost [11]. 
The inherent reliability of a product is determined by the choices 
and actions made during its design, manufacture, and assembly, 
according to Murthy [12]. Robust products function well even 
when there are noisy sources present. It makes sense that the more 
factors related to design, manufacture, and assembly are under 
control [13].
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Figure 1: Factors influencing warranty cost [13].
Where,
N1- Variations in production from piece to piece
N2- wear and tear on components
N3- Variations in consumer behaviour, such as individual customers’ mileage accumulation
N4- Changing weather and road conditions
N5- Relationships between smaller systems

Research Methodology
To improve present product designs, data from industry 

sources is analysed and suitable management systems are applied. 
Estimating warranty costs is aided by data obtained from insurance 
claims. Further warranty forecasting provides results regarding 
the risk of putting the price and duration of the warranty for that 
product into effect. One method of making a product cheaply priced 
is through a warranty. Evaluating the advantages and disadvantages 

of offering a warranty is a difficult undertaking. Reliability engineers 
are frequently asked to evaluate the risk associated with offering a 
system warranty. Of course, providing a warranty for an unproven 
technology is quite risky. However, failing to provide a guarantee 
for their products has a risk as well because it means greater life 
cycle costs for the customer, particularly if the competition offers 
a warranty. Figure 2 explains the study methodology for problem 
detection with warranty data analysis and how the P-D-C-A cycle is 
used to solve the problem.

Figure 2: Problem detection flow chart.
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Data Analysis 		   

To provide meaningful and practical findings, data analysis 
needs to be done at three different levels, by an analyst with a 
strong background in statistics, and by someone who understands 
the warranty process inside and out. The following lists the three 
different analytical levels.

Level 1 

Customer complaints via text are typical. Text mining algorithms 
provide a methodical way to recognize and classify the complaints’ 
raised issues. When a customer reports a problem, it commonly 
happens that the customer care agent is unable to determine what 
caused it.

Level 2 

This can require more than one step. The first phase involves 
merging data to assess product-level failures without differentiating 
between MOP and MIS, and then doing a Pareto analysis based on 
failed components and/or failure mode. These assessments identify 
the most common modes of failure and highlight the weakest parts 
(low dependability). The second stage is to plot failure data at the 
product level, which means organizing the data based on MOP, MIS, 
or other criteria without distinguishing between them based on 
fault code. These results are used to produce a variety of graphs, 
such as time series plots, MIS-MOP plots, and plots that show how 
time is related to MOP. 

These evaluations look for noticeable trends or sudden changes 
that could indicate a problem. An analysis similar to the second 
stage’s has to be done in the third stage, but in greater detail—
for example, for each unique fault code or any other important 
classification. Determination of Problems Predefined rules for 
detection are used to identify problems; these rules are often the 
same as those that are used to identify quality variation based on 
control. 

Any detection rule is susceptible to two different kinds of 
errors:

a)	 Type 1 error: When there is an underlying issue, the rule 
says there isn’t a problem.

b)	 Type 2 error: When there isn’t one, the rule suggests that 
there is. 

The uncertainty resulting from small sample sizes and the 
dearth of available data are the primary drivers of these mistakes.

Level 3 

There are two types of analysis at Level 3. The first phase entails 
having internal or external experts do a comprehensive study of 
malfunctioning components in order to better understand the 
causes of the various types of failures. Understanding the failure 
mechanism and its contributing factors (material used, vendor, and 
design, for example) is necessary to achieve this. The other is to link 
component failure to certain processes (such as design approach, 

production quality control, etc.) at various points in the product life 
cycle. In either case, substantial information is required for problem 
detection and increasingly advanced technologies are required.

Problem Detection
Customer related problems

Customer data collected by service agents at the time a warranty 
claim is made, and customer surveys are the two primary sources 
of information utilized to detect issues related to customers. 
Rising trends in the proportion of consumers dissatisfied with the 
product’s performance and/or warranty services provided point to 
needs and opportunities for improvement.

Service-related problems

The primary source of data used to identify service-related 
problems is customer complaints regarding warranty servicing 
and reimbursement claims. For this type of data to have the most 
impact, it must be carefully examined for each service agent. The 
information needed includes labour costs, service times for specific 
labour or defect codes, and other critical metrics, many of which 
are product specific. The service agents’ values are then compared 
to determine which have much higher or lower values. Significant 
differences imply that there might be a problem with the service 
representative.

Production related problems

Most of the knowledge on this topic comes from the service 
agents’ maintenance of malfunctioning equipment. The production 
department and component suppliers supply the data. In addition 
to the component’s manufacturer which could be the company that 
makes the product or an outside vendor the data must enable the 
identification of a problematic component by batch number or 
manufacturing month.

Design related problems

The primary source of data on design features is the 
extensive study carried out at Level 3. The analysis’s objective is 
to comprehend the failure mechanism and the design flaws that 
neglected to account for it. The problem with the analytical level is 
shown in Table 1.

Table 1: Problem type and level of analysis.

Problem Level of Analysis

Customer Level 1

Service Agent and Production Level 1 and 2

Production and Design Level 1,2 and 3

Non-parametric data analysis

Data analysis begins with the use of graphical and analytical 
approaches in order to gain insights and make conclusions without 
making any assumptions about the mathematical formulation that 
is appropriate for modelling the data. Nonparametric methods are 
essential in this type of data analysis. They provide a compromise 
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for creating more structured models that allow for more precise 
inferences with a degree of assurance about the model’s underlying 
assumptions. Because of this, nonparametric methods are often 
known as distribution-free approaches. 

The nonparametric technique allows the user to analyse data 
without assuming anything about the underlying distribution. Put 
another way, the technique doesn’t need to know the composition 
of the sampled population. The nonparametric approach has a 
few inherent disadvantages in addition to several advantages. 
When data analysis is done without assuming an underlying life 
distribution, several potential issues that could result from making 
incorrect assumptions about the distribution are avoided. However, 
because information loss occurs, using nonparametric techniques 
on data that can be handled by parametric procedures is inefficient. 

Specifically, the nonparametric technique typically yields wider 
confidence bounds than the parametric approach, and it typically 
precludes making predictions outside of the observational range. 
Any set of warranty data should ideally undergo a nonparametric 
analysis before proceeding with parametric analyses predicated 
on the identification of a certain underlying distribution. The 
application of nonparametric methods to draw conclusions about 

distribution functions F(t), density functions f(t), reliability 
functions R(t), hazard functions h(t), cumulative hazard functions 
H(t), renewal functions M(t), mean cumulative function (MCF) l(t), 
and warranty claim rates (WCR) at the product, component, or 
intermediate level. Future warranty expenses may be predicted and 
estimated using these quantities. Estimates of M(t), for instance, 
are required to calculate warranty costs for the non-renewing FRW 
policy in cases where defective products are replaced with new 
ones, and of l(t) in cases when defective items are fixed with little 
repair.

For the automotive sector Repairs per thousand, cost per 
unit, and hazard rate are used in non-parametric analysis. Table 
2 illustrates how changes in a product’s month of manufacture 
and subsequent month of service affect its hazard rate, repairs 
per thousand, and cost per unit. Tables for the production months 
of September, October, November, December, and January are 
provided. The hazard rate, repairs per thousand, and cost per unit 
are shown to vary with the month of service. 

Table 3 shows end values of hazard rate, repairs per thousand 
and cost per unit for each month of production.

Table 2: Warranty claim data for successive MOP.

Warranty Claim data for MOP-September

MIS Number of 
Claims

Number of 
Vehicles in 

Field
N(t) h(t) H(t) R/1000 CPU

4 4 8640 8640 0.00046 0.00046 0.46 5.106

5 9 8640 8636 0.00104 0.0015 1.5 16.65

6 2 8640 8627 0.00023 0.00173 1.73 19.203

8 5 8640 8625 0.00058 0.00231 2.31 25.641

10 6 8640 8620 0.00069 0.003 3 33.3

12 1 8640 8614 0.00012 0.00312 3.12 34.632

Warranty Claim data for MOP-October

3 8 10259 10259 0.00078 0.00078 0.78 8.658

4 8 10259 10251 0.00078 0.00156 1.56 17.316

5 13 10259 10243 0.00127 0.00283 2.83 31.413

6 12 10259 10230 0.00117 0.004 4 44.4

7 30 10259 10218 0.00293 0.00693 6.93 76.923

9 23 10259 10188 0.00225 0.00918 9.18 101.898

10 21 10259 10165 0.00206 0.01124 11.24 124.764

11 10 10259 10144 0.00098 0.01222 12.22 135.642

Warranty Claim data for MOP-November

1 3 8812 8812 0.00034 0.00034 0.34 3.774

2 5 8812 8809 0.00057 0.00091 0.91 10.101

3 4 8812 8804 0.00045 0.00136 1.36 15.096

4 6 8812 8800 0.00068 0.00204 2.04 22.644

5 6 8812 8794 0.00068 0.00272 2.72 30.192

6 18 8812 8788 0.00204 0.00476 4.76 52.836

8 20 8812 8770 0.00228 0.00704 7.04 78.144
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9 16 8812 8750 0.00182 0.00886 8.86 98.346

10 14 8812 8734 0.0016 0.01046 10.46 116.106

Warranty Claim data for MOP-December

0 1 11009 11009 0.00009 0.00009 0.09 0.999

1 2 11009 11008 0.00018 0.00027 0.27 2.997

2 1 11009 11006 0.00009 0.00036 0.36 3.996

3 2 11009 11005 0.00018 0.00054 0.54 5.994

4 6 11009 11003 0.00054 0.00108 1.08 11.988

5 19 11009 10997 0.00172 0.0028 2.8 31.08

7 31 11009 10978 0.00282 0.00562 5.62 62.382

8 26 11009 10947 0.00237 0.00799 7.99 88.689

9 12 11009 10921 0.0011 0.00909 9.09 100.899

Warranty Claim data for MOP-January

3 1 11566 11566 0.00008 0.00008 0.08 0.888

4 4 11566 11565 0.00034 0.00042 0.42 4.662

6 4 11566 11561 0.00034 0.00076 0.76 8.436

7 3 11566 11557 0.00026 0.00102 1.02 11.322

8 1 11566 11554 0.00008 0.0011 1.1 12.21

Table 3: Hazard rate H(t), cost per unit and repair per 1000 data for successive months.

Month of Manufacture H(t) CPU R/1000

October 0.01222 135.642 12.22

November 0.01046 116.106 10.46

December 0.00909 100.899 9.09

January 0.00110 12.21 1.10

For Studying variations with month in service, Table A1 (data 
taken from appendix) explains variation of cumulative hazard 
rate for month of production with successive month in service, 

for successive month in service hazard rate increases as month in 
service increases and afterwards it decreases, Figure 3 is to show 
variations graphically.

Figure 3: Hazard rate variation with MIS.
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Table A2 shows variations of cost per unit for month of 
production with successive month in service and Figure 4 shows 
variations graphically, for successive month in service Cost per unit 

increases as month in service increases and afterwards it decreases, 
it has been observed that this much data analysis is not sufficient, 
therefore it requires parametric analysis for data. 

Figure 4: CPU Variation month wise.

Parametric data analysis

The parametric approach to data analysis is concerned with 
the construction, estimation, and interpretation of mathematical 
models as applied to empirical data. This involves the following 
three steps:

Step 1: Model selection

Step 2: Estimation of model parameters

Step 3: Model validation

Step1: Model selection

There are two basic approaches to selecting a model (1) 
Physics-based modelling, where the model is based on a physical 
theory, and (2) Data-dependent modelling, where the model is 
developed solely on the basis of the available data.

The models involve either statistical parametric life 
distributions or the density or hazard functions associated with 
them. There are a number of parametric models that can be used 
successfully in modelling warranty data.

Step2: Estimation of model parameters

The model will ordinarily involve one or more parameters 
whose values are unknown. Method for using sample data to 
estimate unknown parameters were discussed.

Step3: Model validation 

Validation is the process of determining the degree to which a 
selected model (along with the assigned or estimated parameter 
values) is an accurate representation of the real-world problem 
of interest. A poor fit of model (either graphical or analytical) may 

occur for two reasons: (1) the model is incorrect, or (2) the model is 
correct, but the parameter values specified or estimated may differ 
from the true values by too great an amount. Several approaches 
can be used for model validation. A straightforward approach to 
validating the model involves a goodness-of-fit test. Some of the 
commonly used statistical tests for validating model are the Chi-
Square test, the Kolmogorov - Smirnov (KS) test and the Anderson 
- Darling (AD) test,

Data depending modelling

Model selection: Even with two or three failures for engineering 
analysis, the Weibull approach may operate with incredibly 
small samples. This attribute holds significance in the context of 
aeronautical safety issues and in small-scale development testing. 
(Bigger sample sizes are required for statistical significance.) 
Weibull analysis allows for the implementation of sophisticated 
techniques like failure forecasting and test design substantiation. 
Figure 5 illustrates the variation of the cumulative density function 
with time length. This function, often referred to as probability 
Weibull, is plotted to determine how well the curve fits the existing 
data. It concludes that the Weibull distribution and the available 
data fit each other well.

Figure 6 illustrates the quantity of suspensions and failures 
for the provided data. Suspensions are values for products that 
have not failed throughout their lifetime; failure suspension 
also indicates that several products may fail at a later date. The 
failure/Suspensions (F/S) indicates that how it occurs particular 
time interval. It is indicative of the failure time for the particular 
rejection component. It gives the value of the β, which conclude the 
problem about the PTT nut. 
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Figure 5: Probability weibull plot.

Figure 6: F/S timeline.

Table 4 projects the number of hard steering movement failures 
throughout the course of the next several years. It also indicates 
an increase in failures, which is directly related to an increase in 
product warranty costs.

These failures are unpleasant surprises if they transpire during 
the design lifecycle. This class includes a wide variety of mechanical 
failure modes, and for generic failure modes, beta is predictable. 

Beta fluctuates between 2.5 and 4.0 for low cycle fatigue.

Ball bearing failures - beta = 2.0, roller bearings - beta = 1.5

Corrosion, erosion- beta =2- 3.5,

However, stress corrosion will be 5.0 or greater

V-belts - beta = 2.5

In current case β = 2.8157

And also increase in failure rate that explains

Result: N2- Wearing out of parts with time and usage
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Table 4: Warranty forecast with successive month of production.

Jul-14 Aug-14 Sep-14 Oct-14 Nov-14 Dec-14 Jan-15 Feb-15 Mar-15 Apr-15

Aug 31 37 43 50 57 64 72 80 88 96

Sept 30 36 43 50 58 67 75 84 94 103

Oct 20 25 31 37 43 50 57 65 72 80

Nov 20 25 32 39 46 54 63 72 81 91

Dec 15 21 27 33 41 48 57 66 75 85

Jan 10 15 20 26 32 39 47 55 64 73

Feb 125 158 195 234 277 323 371 421 473 528

Implementation of P-D-C-A Cycle

Plan: First, pinpoint the precise nature of the issue. To truly get 
to the bottom of things, you can use tools like the Why, Cause and 
Effect Diagrams, and Drill Down to find it. After completing this, it 

might be good to gauge the workflow. After that, gather any further 
data you’ll need to begin outlining potential solutions. Analysing 
Cause and Effect is shown in Figure 7. Taking into account the 
child portion and assemblies, it is determined that the PTT nut was 
discovered to be loose.

Figure 7: Root-cause analysis for detected problem.

Table 5: Identify the root causes: outflow.

Valid Probable Cause WHY WHY WHY

PTT Nut becomes loose Less prevailing torque in PTT Nut No Petrol inspection done after set 
up approval

Petrol inspection frequency not 
defined in control plan

Table 6: WHY-WHY analysis.

Valid Probable Cause WHY WHY WHY WHY

PTT Nut becomes loose Less prevailing torque in 
PTT Nut

Rack position disturbed 
during de-pitching

Axial force of roller during 
de-pitching

No stopper to prevent 
axial movement of rack on 

machine

Testing for issues found during the plan phase is crucial, but 
it’s also crucial to look for solutions. Tables 5 & 6 demonstrate the 
need for a stopper to halt the axial movement of the rack on the 
machine during Plan Make sure to test any issues found during 
manufacturing and operation that will be fixed. It was discovered 
that there is an axial shift in the valve housing assembly stopper, 

which needs to be prevented. Additionally, defects in the PTT nut 
itself were discovered, necessitating a post-manufacturing PTT 
inspection.

Do: Table 7 shows observations for three assemblies, all has 
NO-GO situation while testing.



Res Dev Material Sci          Copyright © Madan Jagtap

RDMS.000979. 20(1).2024 2338

Table 7: PTT nut in working condition.

Sr. No. Parameter Specification
Observation

Assy No.1 Assy No.2 Assy No.3

1 1st tightening torque 107kgf-cm Max 0 18 0

2 1st removal torque 15kgf-cm Min 0 12 0

3 5th removal torque 10kgf-cm Min 0 6 0

NG NG NG

Check: Table 8 explains results for Prevailing Torque Type 
(PTT) nut fatigue test, Table shows fault with handling process of 

PTT nut. Figure 8 shows observation of Fatigue test graphically.

Act: Table 9

Figure 8: PTT nut fatigue test histogram.

Table 8: PTT nut testing.

S. No Trials Result

1 PTT nut prevailing torque OK and tightened at 25 Nm No looseness observed after 100000 cycles

2 End plug tightened with nut runner (Ok PTT nut) No looseness observed after 100000 cycles

3 PTT nut prevailing torque NG and tightened at 25 Nm Looseness observed after 1300 cycles

4 PTT nut prevailing torque OK and tightened using nut runner Looseness observed after 5000 cycles

5 PTT nut prevailing torque OK and tightened at 35 Nm No looseness observed after 100000 cycles

6 One seal ring removed from PV No looseness observed after 100000 cycles

Table 9: Modification in PTT nuts

S. No Action Plan Status

1 Inspection Frequency increased from 1/six month to 5 parts /lot. Started

2 100 % torque check before assy. Started

3 Local PTT nut specification revised. Completed

4 Import PTT Nut from Japan.

Stop using Local Nut.

Started

Result and Discussion
It is observed after implementation of PDCA to detected 

problem it helps in reduction of rejection in recalls for product 
under warranty, refer Table 10.
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Table 10: Rejection table showing before and after the PDCA implementation.

WARRANTY REJECTION BATCH CODE ANALYSIS

Part Name: Power Gear Assembly Model: Automobile1

Phenomena: Steering Movement Hard

Analysis Manufacturing Month To 
tal

Rec.  
Month

April’ 
13 May June July Aug Sep Oct Nov Dec Jan’ 

14 Feb March April May June July Aug 
ust

Septe 
mber

April’ 
13 0

May 0

June 0

July 0

Aug 0

Sep 0

Oct 0

Nov 0

Dec 3 1 4

Jan’ 
14 4 8 5 2 19

Feb 9 8 4 1 22

March 2 13 6 2 23

April 12 6 6 1 25

May 5 30 18 19 4 76

June 0

July 6 23 20 31 4 84

August 21 16 26 3 66

Septem 
ber 14

2 1 10 12 1

40

Total 0 0 0 0 2 27 125 92 100 13 0 0 0 0 0 0 0 0 359

Dispatch  
Qty

40 
24

44 
06

32 
75

41 
68

55 
13

86 
40

102 
59

88 
12

110 
09

115 
66

111

54
106 
69

111 
55

115 
79

102 
98

99 
91

129 
59

126 
40

676 
48

Conclusion
Through the application of a case study, it is evident that data 

analysis is a crucial component of research methodology, as it 
allows for the precise identification of issues with warranty claim 
products during servicing. This is achieved by identifying the 
problem as noise factor, as indicated by the value of β = 2.8157, 
and making it simple to identify issues with service agents and 
production. The QC story’s Plan-Do-Check-Act cycle is helpful in 
identifying real-world issues, and steering movement hard data 
reduces product risk. Plan-Do-Check-Act cycle application done 
methodically identifies and eliminates PTT nut related issues.

Appendix 
MOP: Month of Production; MIS: Monthly in Service; CPU: 

Cost Per Unit; PTT: Prevailing Torque Type; QC: Quality Control; 
PDCA: Plan-Do-Check-Act; NG: No Go; KS: Kolmogorov Smirnov; 
AD: Anderson Darling; MCF: Mean Cumulative Function; WCR: 
Warranty Claim Rates; F/S: Failure/Suspension
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