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Introduction
A significant volume of printing and dyeing effluent has been generating worldwide. 

The amount of discharged textile dye wastewater accounts for high percentage of total 
wastewater discharge, posing a serious danger to environmental security [1,2]. Additionally, 
the dyes are non-biodegradable, mutagenic and carcinogenic effects to humans. As a result, 
establishing modern and cost-effective techniques to meet stated criteria for remediating 
water and wastewater, as well as population needs, is now a requirement. Among developed 
methods, many researchers focused on the adsorption using metal oxide supported in single 
or binary form on different carbon materials as a promising method to overcome the previous 
shortcomings of adsorption by activated carbon (AC) alone, for example [3,4]. Accordingly, 
the combination of metal oxides with carbon materials can enhance the adsorption of dyes 
with further degradation operations according to type of these oxides including advanced 
oxidation processes (e.g., Fenton-oxidation, photo-oxidation as exposed to light source and 
wet oxidation with H2O2) [3-7]. Thus, a synergistic effect is obtained due to the presence of 
single/binary transition metal oxides (S/BTMOs) supported on carbon materials. Among 
them, binary transition metal oxides with spinel structures such as CuMn2O4, MnCo2O4, 
ZnMn2O4, NiMn2O4, CuCo2O4, MnFe2O4, and Mn2CuO4 have recently become an importance in 
industrial, environmental and energy applications [8-13]. 

Activated carbons and their supported single/binary transition metal oxides 
(S/BTMOs) for enhanced dye removal

In recent years, the loaded magnetic metal oxides on the AC gained much interest in order 
to improve the adsorption capacity and make the possible recovery of powdered adsorbents 
[3,4]. For example, some studies have prepared magnetic oxides in single/binary states using 
especially iron oxide for developing a magnetized activated carbon by simple economic 
separation. The adsorption and recovery by magnetic separation of AC loaded by Fe2O3 [14], 
Au-Fe3O4 [15], and NiFe2O4 [16] have greatly improved. Other oxides such as cerium dioxide 
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Abstract
Nanocarbons such as nanopore-structured carbon, carbon nanotubes and graphene have inherently 
excellent conductivity, large specific surface area, and chemical and mechanical stability. The combination 
of single/binary transition metal oxides with nanocarbon materials provides synergistic effect on their 
applications such as in environment and energy aspects, superior to the individual component alone. 
This article briefly described the enhanced performance of the dye removal with nanocarbons and their 
supported single/binary transition metal oxides in recent literature.

http://dx.doi.org/10.31031/RDMS.2023.19.000959
https://crimsonpublishers.com/rdms/index.php


Res Dev Material Sci          Copyright © Yousheng Tao

RDMS.000959. 19(2).2023 2215

(CeO2), zinc oxide (ZnO) [17], manganese dioxide (MnO2) [18] 
titanium oxide (TiO2) [19] and Ce-TiO2 [20] have been supported 
on AC to increase the catalytic degradation of dyes. These oxides 
loaded on AC can increase the convenience of operation, recovery, 
and efficiency of adsorption processes as a result of a synergistic 
effect.

Carbon nanotubes and their supported S/BTMOs for 
enhanced dye removal

Carbonaceous nanostructures are a deterministic support in 
water treatment because of their functional properties such as large 
surface area, high mechanical strength, high porosity, a significant 
aspect ratio, strong thermal and electrical properties, good 
chemical stability, impressive hydrophobicity, simplicity of use, and 
separation characteristics [21,22]. In particular, magnetic oxides 
loaded on carbon nanotubes (CNTs) hold remarkable properties 
such as surface-volume ratio, higher surface area and convenient 
separation methods to be effective adsorbents in removal of heavy 
metals and dye [23]. Recently, the synthesis of manganese dioxide 
(MnO2) loaded on multi-walled carbon nanotubes (MWCNTs) has 
attracted tremendous increasing research interest in dye removal 
via Fenton-reaction degradation [24,25]. The combination of both 
adsorption process and catalytic oxidation processes through 
MnO2/MWCNTs nanocomposite system could be provided a 
simple, efficiently and environmentally friendly water treatment. 
Photodegradation of methylene blue dye enhanced significantly 
over fabricated CNTs-supported Mn-TiO2 [5], CNTs/TiO2/AgNPs/
surfactant nanocomposites [7], as well as Fenton-catalyst based 
Cu2S-TiO2/MWCNTs nanocomposites [6]. NiO and Co2O3, NiCo2O4, 
and NiCo2O4/MWCNTs nanocomposites have been synthesized and 
studied for photodegradation of Reactive Red 120 dye [26], where 
NiCo2O4/MWCNTs enhanced largely the photodegradation.

Graphenes and their supported S/BTMOs for enhanced 
dye removal

Graphene has emerged as a useful nano-adsorbent for 
environmental applications because of its high theoretical specific 
surface area (~2630m2g-1) [27]. Moreover, abundant oxygen-
containing functional groups have been incorporated in graphene 
to get graphene oxide (GO) and reduced graphene oxide (RGO) to 
enhance their adsorption capability [28,29]. Maximum adsorption 
capacities of methylene blue dye on the MFe2O4@GO (M=Cu, 
Co or Ni) were 25.81, 50.15 and 76.34mg g−1, respectively [30]. 
Hsieh et al. reported degradation of acid orange 7 (AO7) by Pt-
TiO2/G nanocomposites [31]. Pt-TiO2 can be served as a charge-
generating centre while graphene acted as an electron acceptor and 
transporter in the composite. Ultra large surface area and strong 
π–π interaction on the surface of graphene - based metal oxides are 
responsible for adsorption [28]. 

Conclusion
Nanocarbons such as nanopore-structured carbon, carbon 

nanotubes (CNTs) and graphene can be used as substrates 
for the loading of single/binary transition metal oxides to 
make nanocompostes. The combination of metal oxides with 

nanocarbon materials gives synergistic effect on dye removal. 
The nanocomposites showed enhanced adsorption of dyes with 
further degradation processes according to type of these oxides, 
including advanced oxidation processes as reported in literature 
as Fenton-oxidation, photo-oxidation as exposed to light source 
and wet oxidation with H2O2. Among them, binary transition metal 
oxides with spinel structures such as CuMn2O4, MnCo2O4, ZnMn2O4, 
NiMn2O4, CuCo2O4, MnFe2O4, and Mn2CuO4 loaded on nanocarbons 
have recently become an importance in industrial, environmental 
and energy applications.
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