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Introduction
Metal Organic Frameworks (MOFs) are the important class of porous materials that 

comprise of organic-inorganic building blocks, in which organic components are called linkers 
and inorganic parts are called nodes or Secondary Building Units (SBUs). Linkers are usually 
bi- or multi-dentate organic ligands and SBUs are inorganic metal ions or metal-oxo clusters 
[1]. MOFs are also known as three-dimensional porous coordination polymers (PCPs). MOFs 
have attained considerable research interest due to their tunable pore size, enhanced surface 
area, low framework density, high thermal and chemical stability and diverse functionality, 
which enable them to stand with higher impacts over other porous materials [2].

From last few years, MOFs have been considered as the structurally sound organic-
inorganic hybrid materials due to their vast structural diversity and ease of synthesis. 
Therefore, researchers are frequently developing different types of MOFs and till date 
more than 20,000 MOFs have been rationally designed with advanced topology, which are 
sincerely taking part in various fields of applications such as catalysis, sensing, adsorption 
and separation, gas storage etc [2].

MOFs consist of organic linkers and inorganic metal/metal-oxo clusters (SBUs). Self-
assembly of linkers and SBUs gives rise to three dimensional arrays, in which linkers and 
SBUs are joined together by covalent bonds. The pore dimension and surface area of MOFs can 
be frequently tailored by altering the length of organic linkers or coordination geometry of 
SBUs. Thus, designing of great variety of MOFs can be possible with different void structures 
and diverse structural geometries. The common rigid organic linkers include di-, tri-, tetra-
topic carboxylate groups, neutral nitrogen heterocycles etc. Terephthalate (benzene-1,4-
dicarboxylate), one of the most common di-topic organic linkers is linear in shape. It has 
fascination to interact with paddle-wheel, octahedral or trigonal-prismatic metal/meta-oxo 
clusters. Similarly, trigonal planer tri-topic organic linker, for example trimesate (benzene-
1,3,5-tricarboxylate) or tetrahederal/tetra-topic organic linker, for example methanetetra 
(4-benzoate) are also able to form multi-dimensional MOFs structures with paddle-wheel, 
octahedral, trigonal-prismatic, cubical, square planar, hexagonal bipyramidal SBUs [3]; 
(Figure 1).
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Abstract
This mini review describes the Metal Organic Framework (MOF) as an emerging class of organic-
inorganic materials significant for potential in catalysis, adsorption, gas storage, sensing and biomedical 
applications. The concept of linkers, secondary building units of metal organic frameworks, their various 
synthetic strategies and selective prospective applications are reviewed. 
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Figure 1: Represents the structures of a few commonly used rigid organic linkers in MOFs synthesis.

The variation of functional groups in linkers or change 
in linkers’ length lead to the formation of MOFs with tunable 
structure, geometry, pore dimension and surface area. For example, 
terephthalate, the well-known di-topic organic linker, when 
connected to Zn4O clusters, leads to the formation of IRMOF-1 
(MOF-5). But, the replacement of one or two hydrogen atoms with 
different functional groups such as -Br, -NH2, -OC3H7, -OC5H11, -C2H4 

(cyclobutyl) and -C4H4 (fused benzene) in phenyl ring of terephthalate 
results in the formation of IRMOF-2, IRMOF-3, IRMOF-4, IRMOF-5, 
IRMOF-6, IRMOF-7 respectively. Notably, the variation of functional 
groups in linkers leads to the disparity of surface area and pore size 
of IRMOFs. Additionally, increase in linker’s length leads to increase 
in pore dimension [4], as represented in Figure 2.

Figure 2: Crystal structures of various MOFs synthesized using different carboxylate ligands (the yellow spheres 
represent the voids).
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It is worth mentioning that fabrication of MOFs not only 
depends on linkers but the structure of secondary building units 
strictly regulate the specific design of MOFs. In the context of 
permanent porosity, O. M. Yaghi and his co-workers first developed 
three dimensional, permanently porous, rigid MOF structure 
namely MOF-5, which contains octahedral Zn-based metal clusters 
Zn4O and BDC ligands [5]. Thereafter, a number of porous, rigid 
MOFs structures were developed with various SBUs. For example, 
MOF-199 (HKUST-1) can be developed by using tetrahedral Cu(II) 
metal sites [Cu2(-COO)4] and trimesic acid. Cu(BDC) MOFs are 
fabricated by connecting the Cu(II) dimers with BDC linkers in bi-
dentate bridging fashion [6]. MIL-n series (where, MIL=Matériaux 

de I′Institut Lavoisier) were first discovered by Ferey and co-
workers in 2002. MIL-53-M (M = trivalent metal ions such as Al3+ 

/ Fe3+ / Cr3+ etc.) were fabricated by corner sharing the octahedral 
MO4(OH)2 clusters with terephthalate linkers [7]. MIL-88B (B 
implies BDC ligands) and MIL-101 can be synthesized using 
trigonal prism [M3O(OOCR)6L3]n+ (L implies terminal ligand viz. 
H2O or Cl−) SBUs, coordinated with six terephthalate ligands [8]. 
Zeolite type MOFs such as ZIFs can be built up by connecting the 
tetrahedrally coordinated MN4 (where, M=Zn/Co) clusters with 
ditopic imidazolate linkers [9]. Geometries of a few secondary 
building units and the corresponding crystal structures of MOFs 
are shown in Figure 3.

Figure 3: A few representative SBUs and corresponding crystal structures of different MOFs.

Synthesis of metal organic frameworks

Metal organic frameworks are synthesized by various methods 

as shown in Figure 4. The most common methods are conventional 
method, microwave assisted synthesis, mechanochemical synthesis, 
sonochemical synthesis and electrochemical synthesis. 

Figure 4: Various methods of MOFs synthesis.
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Conventional method of MOFs synthesis: MOF synthesis in 
conventional method usually refers to the method that involves 
electric heating during synthesis. Conventional method includes 
solvothermal and non-solvothermal processes. In solvothermal 
process, the reaction is carried out in sealed container and the 
temperature of the reaction mixture is raised above the boiling 
point of the solvent. In this process, high pressure is generated in 
the closed container that predominantly regulates the reaction. 
In the closed reaction chamber, the linkers interact with metal 
ions, subsequently nucleation occurs followed by growth that 
lead to the formation of highly crystalline MOFs structures. There 
are numerous metal organic frameworks synthesized using this 
approach. Highly crystalline Zn-based MOFs were synthesized via 
solvothermal method [10]. Two dimensional fluorinated metal 
organic frameworks such as F-MOF-4, Cu-F-MOF-4B, Zn-F-MOF-
4B were synthesized solvothermally [11]. Highly crystalline MIL-
101(Cr) was synthesized via hydrothermal approach [12].

Whereas, in non-solvothermal process, the reaction is carried 
out at room temperature or the temperature of the reaction can 
be fixed at boiling point of the solvent. Room temperature non-
solvothermal approach was adopted for the synthesis of various 
MOFs such as Cu-BTC MOF, UiO-66, Zn-based metal organic 
frameworks etc [13,14]. In non-solvothermal approach, the rate of 
nucleation and growth of metal organic frameworks can be tuned 
by changing the reaction temperature or evaporation of the solvent 
at slightly higher temperature. 

Microwave assisted MOFs synthesis: In microwave (MW) 
assisted MOF synthesis, electromagnetic waves interact with solid 
or liquid materials, which results in high molecular orientation 
in solvent or reactant materials. These lead to the elevation of 
temperature in the reaction medium. In MW assisted synthesis, the 
high and homogeneous temperature can be maintained throughout 
the reaction medium. The solvents used in MW assisted synthesis 
can be selective, so that the electromagnetic waves can interact 

strongly with the reaction medium. Cr-based MIL-100 metal 
organic framework was first synthesized by this approach [15]. 
Later on, IRMOF-1, 2, 3 were synthesized using this process [16].

Mechanochemical synthesis of MOFs: In mechanochemical 
synthesis, the mechanical force breaks the inter-molecular bonds 
and simultaneously chemical transformation occurs in the reactant 
molecules to yield the product. The entire process occurs in solvent-
free condition, therefore, the process is very much eco-friendly. The 
first MOF synthesized in this process was three dimensional Cu-
based MOF [Cu(INA)2], where isonicotinic acid was used as linker. 
After the first report, HKUST-1, MOF-14, [Zn(EIm)2] MOFs were 
synthesized by mechanochemical process [17-19].

Sonochemical synthesis of MOFs: In sonochemical process, 
high energy ultrasonic vibrations are applied to the reaction 
mixture. This energy-efficient process is used to synthesize a 
number of metal organic frameworks. The first MOF, synthesized 
using this approach was [Zn3(BTC)2. 12H2O] [20]. Sonochemical 
approach was also employed to synthesize MOF-5, HKUST-1, ZIF-8 
etc [21-23].

Electrochemical synthesis of MOFs: In electrochemical 
synthesis, metal ions are allowed to pass through the anodic 
dissolution to the reaction medium, where they interact with 
dissolved linkers to form metal organic frameworks. The first 
electrochemically synthesized MOF was Cu-BTC MOF [24]. 
Thereafter, Ni-BTC, HKUST-1, ZIF-8, MIL-100(Al), MIL-53(Al), and 
NH2-MIL-53(Al), MOF-5 were also framed with electrochemical 
approach [25-27]. 

Applications of metal organic frameworks

Metal organic frameworks have attained remarkable research 
interest due to their wide-spread applications in the field of catalysis, 
sensing, adsorption and separation, biological applications etc., as 
shown in Figure 5.

Figure 5: Various applications of metal organic frameworks.
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Gas storage, adsorption and separation: MOFs are crystalline 
solids having permanent porosity and large surface area, for which 
they are capable of storing various gas molecules, solids and 
liquids within their structures. MOF with divalent metal ions such 
as HKUST-1 exhibits excellent porosity, therefore, they can uptake 
methane (CH4) gas molecules [28]. PCN-250(Fe2M) MOFs, where, 
M=Fe, Co, Ni, Mn and Zn are used in CH4 storage applications [29]. 
The flexible MOFs are advantageous over rigid MOFs in gas storage 
performance. For example, MIL-53(Al) can uptake huge amount of 
CH4 gas at room temperature [30]. MOF-177 and was reported for 
CO2 storage application [31]. MOFs are also proficient to adsorb 
toxic chemicals from water. For example, UiO-66, PCN-222 were 
used as toxic dye adsorbents [32,33]. 

Catalysis: MOFs act as very good catalyst in many heterogeneous 
chemical reactions. The catalytic activity of MOFs is directly 
correlated to metal centers, as the coordinatively unsaturated 
secondary building units act as Lewis acids for many chemical 
reactions. For example, MIL-100(Fe) was used as Lewis acid 
catalyst in Friedel-Crafts reactions [34], regioselective ring-opening 
reactions of epoxides [35], Claisen-Schmidt condensation reactions 
[36], Knoevenagel condensation reaction [37], cyanosilylation 
reaction [38], etc. UiO-66 can be used in aldol condensation reaction 
[39]. Besides these, MOFs can act as promising light harvesting 
materials in photocatalysis. For example, PCN-22 was used as 
photo catalyst in light driven alcohol oxidation reaction [40]. MIL-
101(Fe) also acts as excellent photocatalyst in photocatalytic water 
oxidation reaction [41].

Sensing: MOFs are used as excellent chemical sensors. For 
instance, water soluble Cd-based MOF [Cd2(TIB)2(BDA)2] was used 
as chemical sensor for the detection of ketones in aqueous medium 
[42]. Fluorescent metal organic framework, MIL-53(Al) was used 
for the detection of Fe3+ ions in aqueous solution [43]. Antibiotics 
and explosives in water could be detected by Zr-based MOFs such 
as Zr6O4(OH)8(H2O)4(CTTA)8/3 and Zr6O4(OH)8(H2O)4(TTNA)8/3 
[44]. Toxic heavy metals in water can be detected by UiO-66 [45]. 
Fumarate based RE-fcu-MOF thin film has the ability for selective 
detection of H2S gas [46].

Biomedical applications: In the field of biomedicine, MOFs 
play a vital role owing to their well-defined structures, tunable 
pore size and large specific surface area. MOFs with non-toxic 
metal-sites were used as host matrices to incorporate biologically 
active compounds such as drugs, enzymes etc [28]. The pioneering 
work on MOF based drug delivery was carried out by Férey et al. 
[47] in 2005. Based on Férey’s work, lots of research works are 
being continued to further explore the MOF’s proficiency in the 
field of targeted drug delivery systems. For example, flexible metal 
organic frameworks MIL-53(Cr, Fe) were used for in vitro release of 
ibuprofen [48]. ZIF-8 was also used as host matrix for the release 
of anticancer drug doxorubicin [49]. Non-conventional anti-cancer 
drug such as [Ru(p-cymene)Cl2(pta)] (RAPTA-C) was successfully 
released into SBF solution by Ni-based MOF (CPO-27-Ni) [50]. 

Conclusion
This review endeavored to the concepts, various synthetic 

strategies and applications of MOFs. The MOFs can be prepared 
by Conventional methods, microwave assisted, sonochemical, 
mechanochemical and electrochemical approaches. The structural 
analysis established the MOF crystal structure. These MOFs have 
been successfully used for various applications such as catalysis, 
adsorption, gas storage, sensing, and biomedical applications. 
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