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Introduction
It is well known that melting temperatures of nanocrystals with free surfaces or deposited 

on inert substrates, including metallic [1-3], organic [4,5], inert gas [6] and semiconductors 
[7,8], decrease as their sizes decrease. Attempts have been made to develop a model for the 
melting temperature of nanocrystals [2,3,5,6] based on the size dependent amplitude of the 
atomic thermal vibrations in terms of the Lindemann criterion. The model thus formulated 
for the size-dependent melting is based on the Mott expression for the vibrational entropy 
for metallic crystals at melting temperature [9]. Nanocrystals are intrinsically characterised 
by a large ratio of the number of surface atoms to volume atoms which modifies some of 
the basic material properties such as the thermodynamic and thermophysical properties. 
Earlier models [10-14] of melting assume spherical shape of nanomaterials and yield a linear 
relationship between the melting temperature and the reciprocal of the particle size.

Because of the importance of melting thermodynamic parameters of nanomaterials on 
their physical and chemical properties, the latent heat of nanomaterials in terms of Hm(D) 
function has been studied experimentally and theoretically [4,5,15-19]. It is found that Hm(D) 
function has a size-dependent value which drops as D decreases. Kim et al. [20] pointed out 
that it is necessary to investigate the size-dependent cohesive energy of nanomaterials Ec(D), 
which should be more directly related to the nature of the thermal stability of nanomaterials in 
terms of solid-vapour transition than Hm(D) function. Jiang et al. [21] have given a quantitative 
model for the size dependence of latent heat which has been extended to determine Ec(D) 
function related to the solid-vapour transition. Qi [22] introduced a shape factor to account 
for the particle shape difference and developed a model for the size and shape dependent 
cohesive energy of nanoparticles. According to the relation between melting temperature 
and cohesive energy, the expression for the size and shape dependent melting temperature of 
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Abstract
We have studied melting temperature, Debye temperature, thermal expansivity and specific heat for 
some nanomaterials viz. Al, Fe, Co, Cu, Se, Ag, In, Sn, Au and Pb by using the Jiang model and other 
models reported in recent literature. We have also modified these models by taking into account 
the dependences of thermophysical properties on the size and shape as well as the change in lattice 
volume of nanomaterials. The modified formulations have been used to obtain the results for various 
properties of nanomaterials. The results have been compared with the available experimental data. It is 
found that the predicted results present good agreement with the experimental studies as well as with 
theoretical results reported recently. The melting temperature and other thermophysical properties for 
the nanomaterials under study are improved significantly by taking into account the variation of lattice 
volume.
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nanoparticles has been formulated.

Following the work of Jiang et al. [21] on the size-dependent 
cohesive energy of spherical nanoparticles and the shape effect 
on the ratio of surface atoms to the total atoms, Lu et al. [23] have 
developed a unified model to describe size, dimensionality and 
shape dependent melting temperature of nanocrystals. Goyal et al. 
[24] concluded that the Jiang model [21] is the best suited model 
for calculation of melting temperature and other thermophysical 
properties as compared to the Lu model [23]. They have also used 
various models for calculating thermophysical properties of some 
nanomaterials without taking into account the change in lattice 
volume [25,26]. Effect of nanoscale size on lattice volume in solid 
materials has been studied by Chattopadhyay et al. [27], Omar [28] 
and Abdullah et al. [29]. 

We present a model based on the ratio number of surface 
atoms to that of its interior, to calculate the size dependence of 
lattice volume of nanomaterials. The expression for melting point 
is modified by considering the effect of lattice volume in the 
Lindemann law [30]. Both values of lattice volume and melting 
point obtained for nanomaterials are used to calculate lattice 
thermal expansion by using a formula applicable for tetrahedral 
semiconductors [28]. Abdullah et al. [29] have estimated the effect 
of size on bulk modulus and related parameters, including melting 
temperature and mass density. Kumar et al. [31] extended the work 
for the size-dependence of cohesive energy and Debye temperature.

In the present study we consider the nanomaterials of ten 
metals viz. Al, Fe, Co, Cu, Se, Ag, In, Sn, Au, Pb. We determine melting 
temperatures, Debye temperatures, thermal expansivity, specific 
heat using the modified formulations derived from the Jiang model 
[21], Lu model [23] and Bhatt-Kumar model [31]. The results based 
on different models are compared with each other and also with the 
experimental data available for various nanomaterials under study. 
The formulations are modified by taking into account the variations 
of lattice volumes for nanomaterials.

Method of Computation
According to Jiang model [19,21], the size dependent melting 

temperature of nanomaterials can be written as follows:
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where Tmn is the melting temperature for nanomaterial and Tmb 
is melting temperature for the corresponding bulk material. 

2
nσ  is 

the average Mean Square Displacement (MSD) of atoms, and 
2
bσ  

is their corresponding bulk value, γ  is the ratio between MSD of 
atoms at the surface and that within the material. D0 is defined as 
the critical size at which all the atoms are present on the surface of 
nanomaterials [32] and it is given below 
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where d denotes the degree of freedom and h represents atomic 
diameter. For spherical nanomaterials we have d=0, for nanowire 

d=1, for thin films d=2 [18,21]. The vibrational entropy at melting 
temperature of bulk materials can be used to determine γ  for 
nanomaterials with free surface [5]
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Here R is the universal gas constant, Svib is the vibrational 
entropy at melting temperature of bulk materials. Equation (1) 
reduces to the following expression
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According to Jiang model, shape and size dependences of Debye 
temperature Dθ , thermal expansivity α  and specific heat Cp for 
nanomaterials are given as follows [24]
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Equation (5) is obtained from the Lindemann law according 
to which Tm is proportional to 

2
Dθ . Equation (6) is based on the 

inverse proportionality of Tm with thermal expansivity α  [24]. 
Equation (7) takes Cp to be proportional to α  [24].

Bhatt [31] developed a model for melting temperature, cohesive 
energy and Debye temperature by using the formulation due to Qi 
[33] given below
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where t is a dimensionless parameter which may have different 
values for different models. If t→0 the size effect is very low. Further 
if t=0 the material can be treated as bulk material with no size 
effect, as summarized by Bhatt and Kumar. It should be mentioned 
here that for t=1, Eq. (8) reduces to the relation of size dependence 
of melting temperature as proposed by Qi [33]. Using Lindemann 
criterion of melting [30]
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where M is the molecular mass and V is the volume for atom. 
Using equation (10), Liang [34] reported the following relation
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Combining Eqs. (8) and (11) we get the following relationship
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According to Bhatt-Kumar model [35,36] the shape and size 
dependent thermal expansivity and specific heat for nanomaterials 
are given by the expressions
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where T0 is the reference temperature.

It should be emphasized that Eq. (11) follows from Eq. (10) 
only when the volume is considered to remain the same for bulk 
and nanomaterial, i.e. Vb=Vn. However, this is not valid as discussed 
by Omar and coworkers [28,29]. In the present study we have used 
the following modified expression obtained by taking Vb not equal 
to Vn. Eq. (11) is modified as follows
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Shi [2] has found that
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Equations (15) and (16) taken together yield
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It is known [37] that for bulk material 
bα is proportional to 
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where 
nα
is the volume thermal expansion coefficient or 

thermal expansivity for nanomaterial and bα is that for the bulk 
material. Now from Eqs. (17) and (18) we get
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According to Zhu et al. [37], we have the ratio for specific heats
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Eqs. (15) and (20) then yield
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where Cpn represents specific heat for nanometerials at constant 
pressure and Cpb the corresponding bulk values.

Results and Discussion
Values of input data [38-42] used in computational work for the 

nanomaterials under study are given in Table 1. Values of shape and 
size dependent parameters are given in Table 2. We have obtained 
the results for melting temperature, Debye temperature, thermal 
expansivity, specific heat by taking into account the size and shape 
dependences for nanomaterials viz. Al, Fe, Co, Cu, Se, Ag, In, Sn, Au, 
Pb. The melting temperatures are computed using Eqs. (4), (8) 
and (17). The results for some selected nanomaterials are given in 
Figures 1-7. 

Table 1: Values of input data used in calculation for ten nanomaterials.

Nanomaterial

Atomic Diameter

h(nm)

[11,38,39]

Bulk Vibrational 
Entropy Svib

(J mol-1K-1)

[39]

Bulk Melting 
Temperature

Tmb(K)

[40]

Bulk Debye 
Temperature 

θDb(K)

[41,42]

Bulk Thermal 
Expansivity αb(10-

5K-1)

[40]

Bulk Specific Heat

Cb

(J mol-1K-1)

[39]

Al 0.252 9.65 933 428 – 11.46

Fe 0.248 6.82 1811 470 0.92 –

Co 0.251 7.92 1768 395 – –

Cu 0.256 7.85 1358 343 1.50 24.47

Se 0.230 5.24 494 135.5 9.45 –

Ag 0.289 7.82 1234 – 1.50 25.35

In 0.324 7.59 430 – – 26.74

Sn 0.280 9.22 505 140 – –

Au 0.288 7.62 1338 184 – –

Pb 0.350 6.65 600 – 8.70 –
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Table 2: Size and shape dependent of parameters [18, 21] used in computations. Values of atomic diameter are given 
in Table 1.

Shape Degree of Freedom (d) Critical Size (D0)

Spherical 0 6h

Nanowire 1 4h

Thin film 2 2h

Figure 1: Size dependence of melting temperature Tmn (K) for Al nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (4), are represented by open circles ( ), Bhatt-Kumar model, Eq. (8), by broken curve 
( ), improved model Eq. (17) by continuous curve ( ). Experimental data [43] are represented by dark 

circles ( ).

Figure 2: Size dependence of melting temperature Tmn (K) for Ag nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (4), are represented by open circles ( ), Bhatt-Kumar model, Eq. (8), by broken curve 
( ), improved model Eq. (17) by continuous curve ( ). Experimental data [38] are represented by dark 

circles ( ).

Figure 3: Size dependence of melting temperature Tmn (K) for in nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (4), are represented by open circles ( ), Bhatt-Kumar model, Eq. (8), by broken curve 
( ), improved model Eq. (17) by continuous curve ( ). Experimental data [44] are represented by dark 

circles ( ).
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Figure 4: Size dependence of melting temperature Tmn (K) for Sn nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (4), are represented by open circles ( ), Bhatt-Kumar model, Eq. (8), by broken curve 
( ), improved model Eq. (17) by continuous curve ( ). Experimental data [16] are represented by dark 

circles ( ).

Figure 5: Size dependence of melting temperature Tmn (K) for Pb nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (4), are represented by open circles ( ), Bhatt-Kumar model, Eq. (8), by broken curve 
( ), improved model Eq. (17) by continuous curve ( ). Experimental data [45] are represented by dark 

circles ( ).

Figure 6: Size dependence of melting temperature Tmn (K) for in nanomaterial nanowire shape. Values calculated 
from the Jiang model, Eq. (4), are represented by open circles ( ), Bhatt-Kumar model, Eq. (8), by broken curve 
( ), improved model Eq. (17) by continuous curve ( ). Experimental data [46] are represented by dark 

circles ( ).
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Figure 7: Size dependence of melting temperature Tmn (K) for in nanomaterial thin film shape. Values calculated 
from the Jiang model, Eq. (4), are represented by open circles ( ), Bhatt-Kumar model, Eq. (8), by broken curve 
( ), improved model Eq. (17) by continuous curve ( ). Experimental data [47] are represented by dark 

circles ( ).

The three models have been used to study the size and shape 
dependences of thermophysical properties of nanomaterials. The 
results obtained for size dependence of melting temperature Tmn of 
Al and Ag nanomaterials are in given Figures 1 & 2 respectively. It is 
found that Bhatt-Kumar model (Eq. 8) and the improved model used 
in the present study (Eq. 17) give approximately similar results, 
which are in good agreement with the available experimental 
data [38,43]. However, the Jiang model [21] is found to deviate 
significantly from the results experimental. For In nanomaterial 
(spherical shape) all the models give similar variations of melting 
temperature Tmn with size D as shown in Figure 3. An improved 
model is nearly about the experimental data [44]. The variation of 
melting temperature Tmn with size D for Sn spherical nanomaterial 
shown in Figure 4, the improved model gives better results with the 
available experimental data [16] as compared to Jiang model [21] 
and Bhatt-Kumar model [31]. For Pb nanomaterial with spherical 
shape (Figure 5) the improved model and Bhatt-Kumar model [31] 
yield good agreement with the available experimental data [45], 
but the Jiang model [21] is found to deviate.

We have computed the variations of melting temperature Tmn 
with size D in case of in nanomaterial also with nanowire and thin 
film shapes. The results Figure 6 show that the improved model is 
close to the available experimental data [46]. The Jiang model [21] 
and the improved model give similar variations in Figure 7 while 
the Bhatt-Kumar model [31] becomes away from the available 
experimental data [47] as the value of D increases.

The Debye temperatures computed from Eqs. (5), (12) and 
(15) are reported in Figures 8-10 for Co, Se and Au nanomaterials 
all with spherical shape. It is found that the Debye temperature 
increases with increasing size (D). The improved model yields good 
agreement with the available experimental data for Co [48]. Size 
dependence of Debye temperature Dnθ  for Se nanomaterial with 
spherical shape as shown in Figure 9 reveals that the experimental 
data [49] lie in between the Bhatt-Kumar model [31] and the 
improved model but deviate from the Jiang model [21]. For Au 
nanomaterial with spherical shape (Figure 10), both the Bhatt-
Kumar model and the improved model give similar results in 
agreement with the available experimental data [49].

Figure 8: Size dependence of Debye temperature θDn (K) for Co nanomaterial spherical shape. Values calculated from 
the Jiang model, Eq. (5), are represented by open circles ( ), Bhatt-Kumar model, Eq. (12), by broken curve (

), improved model Eq. (15) by continuous curve ( ). Experimental data [48] are represented by dark 
circles ( ).
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Figure 9: Size dependence of Debye temperature θDn (K) for Se nanomaterial spherical shape. Values calculated from 
the Jiang model, Eq. (5), are represented by open circles ( ), Bhatt-Kumar model, Eq. (12), by broken curve (

), improved model Eq. (15) by continuous curve ( ). Experimental data [49] are represented by dark 
circles ( ).

Figure 10: Size dependence of Debye temperature θDn (K) for Au nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (5), are represented by open circles ( ), Bhatt-Kumar model, Eq. (12), by broken 

curve ( ), improved model Eq. (15) by continuous curve ( ). Experimental data [49] are represented by 
dark circles ( ).

Values of volume thermal expansion coefficient or thermal 
expansivity computed from Eqs. (6), (13) and (19) for Fe, Cu, Se 
nanomaterials are given in Figures 11-13. The variations of thermal 
expansivity nα with size (D) show that the thermal expansivity 
increases with increasing size D. The results obtained from the 
improved model present good agreement with the experimental 
data for Fe nanomaterial [50]. For Cu nanomaterial (Figure 

12); [51], the improved model gives better results than those 
determined from the Jiang model [21] and the Bhatt-Kumar model 
[31]. The variations of thermal expansivity ( )nα  with size (D) for 
Se nanomaterial are shown in Figure 13. All the three models give 
similar results in reasonably good agreement with the available 
experimental data for [52].
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Figure 11: Size dependence of thermal expansivity αn(10-5K-1) for Fe nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (6), are represented by open circles ( ), Bhatt-Kumar model, Eq. (13), by broken 

curve ( ), improved model Eq. (19) by continuous curve ( ). Experimental data [50] are represented by 
dark circles ( ).

Figure 12: Size dependence of thermal expansivity αn(10-5K-1) for Cu nanomaterial spherical shape. Values 
calculated from the Jiang model, Eq. (6), are represented by open circles ( ), Bhatt-Kumar model, Eq. (13), 
by broken curve ( ), improved model Eq. (19) by continuous curve ( ). Experimental data [51] are 

represented by dark circles ( ).

Figure 13: Size dependence of thermal expansivity αn(10-5K-1) for Se nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (6), are represented by open circles ( ), Bhatt-Kumar model, Eq. (13), by broken 

curve ( ), improved model Eq. (19) by continuous curve ( ). Experimental data [52] are represented by 
dark circles ( ).
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Equations (7), (14) and (21) have been used to obtain specific 
heat for Ag nanomaterial. The results are given in Figure 14. The 

improved model is closer to the experimental data [53] as compared 
to other models.

Figure 14: Size dependence of specific heat Cpn (J mol-1K-1) for Ag nanomaterial spherical shape. Values calculated 
from the Jiang model, Eq. (7), are represented by open circles ( ), Bhatt-Kumar model, Eq. (14), by broken 

curve ( ), improved model Eq. (21) by continuous curve ( ). Experimental data [53] are represented by 
dark circles ( ).

Following the method used by Goyal et al. [24] we have 
determined the size and shape dependences of various properties 
for Au, Se and Ag nanomaterials. The results are given Figures 15-
18. We have computed the variations of melting temperature Tmn 
for Ag nanomaterial, Debye temperature 

Dnθ  for Au nanomaterial, 

thermal expansivity 
nα  for Se nanomaterial and specific heat Cpn 

for Au nanomaterial with size D considering different shapes viz. 
spherical, nanowire and thinfilm. The results given in Figures 15-
18 are determined from the improved model using Eqs. (15), (17), 
(19) and (21) [54].

Figure 15: Shape and size dependences of melting temperature Tmn computed using equation (17) for Ag 
nanomaterials shown by  (spherical shape),  (nanowire),  (thin film). Experimental data [38] 

are represented by dark circles ( ).
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Figure 16: Shape and size dependences of Debye temperature θDn (K) computed using equation (15) for Au 
nanomaterials shown by  (spherical shape),  (nanowire),  (thin film). Experimental data [49] 

are represented by dark circles ( ).

Figure 17: Shape and size dependences of Thermal expansivity αn (10-5K-1) computed using equation (19) for Se 
nanomaterials shown by  (spherical shape),  (nanowire),  (thin film). Experimental data [18] 

are represented by dark circles ( ).

Figure 18: Shape and size dependences of specific heat Cpn/Cpb computed using equation (21) for Au nanomaterials 
shown by  (spherical shape),  (nanowire),  (thin film). Experimental data [54] are represented 

by dark circles ( ).
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Conclusion
The results for melting temperature, Debye temperature, 

thermal expansivity, specific heat obtained for different 
nanomaterials using the improved model formulated are found 
to present close agreement with the available experimental data. 
The improved model formulated in the present study by taking 
into account the variation of lattice volume with the change in size 
parameter D has been found to yield better agreement, in general, 
for the nanomaterials under study. The factor (Vn/Vb)2/3 in Eq. 
(17) has a strong influence on the melting temperature and other 
thermophysical properties of nanomaterials. In the previous work 
[21,24-26] on nanomaterials, the lattice volume was assumed to 

remain constant (Vn=Vb) which is not appropriate.
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