Study of CoFe$_2$O$_4$ @ Calixarene Core-Shell as a Novel Catalyst

Mahsa Aliakbarzadeh Roudsary1, Karim Zare1* and Majid Monajjemi2

1Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
2Department of Chemical engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

*Corresponding author: Karim zare, Department of chemistry, Science and research branch, Islamic Azad university, Iran

Submission: May 14, 2018; Published: August 21, 2018

Abstract

The properties of CoFe$_2$O$_4$@Calix [8] Core-Shell as a novel catalyst has been investigated to compare with well-known catalyst Fe$_3$O$_4$@Silica. It has been shown that CoFe$_2$O$_4$ magnetite particle can be used as an important catalyst inside the calix ring. In our previous papers, good results have been yielded and exhibited about the B$_N$ ring properties and CoFe$_2$O$_4$@B$_N$. In present work, it has been shown that there is an-anomalous attraction between CoFe$_2$O$_4$ and calix [8] coated molecules. The Physical-chemistry properties such as energy density, potential energy density, electron density, ELF, LOL, eta index, elasticity of electron density and ECP for CoFe$_2$O$_4$@calix [8] shell have been calculated and simulated in related reactions for those groups-functionalized.

Keywords: CoFe$_2$O$_4$; Nano-particles; Electron density; calix [8]; Silica; SiO$_2$

Introduction

CoFe$_2$O$_4$ as the Cobalt ferrite crystallizes in a partially inverse spinel position represented as (Co$^{2+}$Fe$^{3+}$1-x)(Co$^{2+}$1-xFe$^{3+}$1+x)O$_4$ where x based on thermal condition. It is ferri-magnetic and exhibits a relatively magnetic hysteresis which distinguishes it from the other of the spinel ferrites. Magnetic measurements on nano-particles of cobalt ferrite dispersed in various solvents of organic compounds and nano-crystalline powders prepared by hydroxide precipitation have been investigated earlier. In magnetic fluids, it has been seen that for particle above threennano-meters the saturation magnetization remains constant at about 30emu.g$^{-1}$ that is extensively less than the bulk values [1-5].

Magnetic Nan-O-Particles (MNPs) have shown exceptional potential for several biological and clinical applications. However, MNPs might be coated by the biocompatible shells for such applications. The aim of this study is to understand if and how the surfaces charges and coatings can affect the magnetic and electronic properties of Cobalt ferrite crystallizes. The role of the surfaces on the magnetic moments of a magnetic nano particle such as CoFe$_2$O$_4$ is an important issue, and various effects can contribute for making it deviate from the bulk value, including the charges, the nature of the coating, also the synthetic technique. The electronic properties and ionic distribution of CoFe$_2$O$_4$ NPs were probed by X-ray absorption spectroscopies X-ray-magnetic-circular dichroism and X-ray-photoemission-spectroscopy techniques known as the abbreviation XAC, XMCD and XPS respectively. Magnetite-partie des areas also of interests in medicinal and industries application such as Magnetic-Resonance-Imaging (MRI) or organic catalyst and nano-material synthesize [4-8].

The overall magnetic behavior and the hyper-thermic properties were evaluated by magnetometers and molecular modelling measurements, respectively. The results show that all of the investigated CoFe$_2$O$_4$ NPs have high magnetic anisotropy energy, and the surfaces charges and coating do not influence appreciably their electronic and magnetic properties. In addition, the citrate shell improves the stability of the NPs in aqueous environment, making CoFe$_2$O$_4$ NPs suitable for biomedical applications. Magnetic nano-particle exhibits several unique properties such as super-para-magnetism compared to bulk material and particularly, are used in the field of biologand medicines. Magnetic nano-particle has attracted a great deal of research interests due to their distinctive properties and special application recently [5-9]. CoFe$_2$O$_4$ is a well-known hard magnetic material with very high cubic magneto-crystalline anisotropy, high coercively and moderate saturation magnetization. These properties make it a promising material for high-density magnetic recording. The most applications require at least a magnetic-particle for dispersing in the non-magnetic matrixes. This matrix plays an important role for providing the meaning of particle dispersion for determining a physical property of a composite.
Recently, in the sol-gel synthesis of CoFe$_2$O$_4$ particles, the gels are built up via physical and chemical bonds between the chemical species. It has been introduced a different sol-gel route@polyacrylamide gel route for preparing CoFe$_2$O$_4$ nano-particle. Due to lack of controls over the specific transformation of an nano-particle, obviously super-paramagnetic particle has not been prepared from magnetite, i.e. Magnetite-nano-particle which generally loses their permanent magnetic properties in the lake of the external magnetic field [6-10]. The complex of metal-CoFe$_2$O$_4$@SiO$_2$-NH$_2$ nano-particles could be recovered easily from aqueous through magnetic separation and reproducibly by acid treatment. By this work it has been exhibited the amino-functionalized CoFe$_2$O$_4$ @ calix[8] magnetic nano-particles compare to CoFe$_2$O$_4$@SiO$_2$ is much more effective as recyclable adsorbent for the removal of heavy and alkali/earth metal ions in water and wastewater treatments. Silica shells chemically is stable and can be rapidly functionalized in the bio-conjugation purposes, in other words is biocompatible therefore CoFe$_2$O$_4$@SiO$_2$ as a silicacoated magnetite composite nano-particles have been synthesized by several groups. Catalysts have a very sensitivetreatment in technology and modern sciences as they increase reaction yield via reducing the temperature in synthesis of the chemical product. There are two basic types of catalysis, heterogeneous, where the reaction accomplishes on the surfaces and the catalystasre in the solid phase. Homogeneous, where the catalyst is in one phase as reactant. The other important items of these matrixes are to act as a protection for magnetic nano-particles against oxidation or corrosion especially the metallic nano-particles. Among oxide matrixes such as alumina, silica, zeolites, titanics oxides, carbon-based, the silica can be a general suitable material for the matrixes because of inertness of the magnetic fields, its non-toxicity and easiness for forming crosslinked networks structure [10-17]. The bridge between heterogeneous and homogeneous catalysts can be attained through the CoFe$_2$O$_4$ nanoparticle [17-25]. CoFe$_2$O$_4$ exclusively is useful and important as the magnetic nano-particle which exhibit strong magnetic-moment and are seldom sustained outside of an external magnetic field. These kinds of nano-particle might consist of several materials such as nickel, cobalt, iron oxides, and ferrites also alloys such as platinum/iron. CoFe$_2$O$_4$ MNPs of silica shells catalytic materials have the benefit for increasing surface area which causes for any increased reaction rate. Moreover, nano-particle might permit additional catalytic functionality because of their unique properties. Several catalysis of magnetic nano-structure has been investigated up to now, such as preparation of nano-composite materials consist of magnetic-(core) nano-particle which has been coated by various shells of other catalytically active nano-material [20-30].

Other type of catalyststhat are interest for organic compounds involves the using of organic molecules which are enabling for preservation the material in the end of any reactions for reusing [25-35]. In this work we have investigated the catalysis’s properties of CoFe$_2$O$_4$ nano-particles @calix [8] instead of SiO$_2$ for comparing in chemical synthesizes [36-47]. Recently extensive theoretical and experimental studies have been accomplished on boron-nitride-fullerenes for understanding their relative stabilities also size dependence of important physical properties. In our previous works [48-61], it has been exhibited the system stabilities, NMR data, electronic properties, and chemical phenomenon.

Background & Methodology

Magnetic particles are suitable for aqueous transition and heavy metals due to their unique advantages of quick separation and their high surface area under external magnetic fields [62-65]. The surface modification, adsorption affinity, including covalent bonding and physical coating, has often been explored for enabling specific complexation for further facilitates [66-70]. Recently it have been exhibited which the amino-functionalized molecules demonstrated outstanding abilities for removing a wide variety of transition heavy metals [71-76]. Although CoFe$_2$O$_4$@SiO$_2$ has recently been investigated for potential biomedical applications [77-81], there is no work about the CoFe$_2$O$_4$ @calix[8].

In this study the theoretical approaches magnetic an adsorbent has been developed via covalently grafting amino group over the surfaces of CoFe$_2$O$_4$ @calix[8] nano-particles. Part of the systems including CoFe$_2$O$_4$ @calix [8] nano-particles has been simulated with QM/MM methods and the investigation carried out by the Monte Carlo calculations. In this study, various force fields are done via Amber® and OPLS for comparing the calculated energy of the CoFe$_2$O$_4$ @calix [8] nano-particles. Furthermore, a Hyper-Chem professional release 7.01 program is used for any further calculations. The density functional method is used for the high level while the semi-empirical (pm_5) with pseudo=LANL, and Pm_5/MM for both of them respectively. Some accurate studies have indicated that in-accuracy of the low range exchange energies go to the large systematic errors for the prediction of molecular properties.

Geometries optimization and electronic calculations have been accomplished using the m06 functional of DPT. These approach are based on the solution of the Kohn & Sham [82] in the plane-waves sets with projector-augmented-pseudo-potentials. The Perdew & Burke [83] exchange-correlation and generalized-gradient-approximation GGA are also used for non-bonding calculation.

The charge transferring and electrostatic potentials derived charges were also estimated using the Merz & Kollman [84]; [85,86]. The charges calculation methods based on MESP or molecular-electrostatics-potentials fitting are not well suited for the larger systems whereas several of the inner-most points are located far away from the centers at which the MESP are computed. In that position, variation of the inner-most atomic charges would not be towards the changing of the MESP outside of the molecules [87,88]. The interaction energies or adsorbs energies between metals and CoFe$_2$O$_4$@calix[8] catalyst were done according to the equation as follows:

$$\Delta E_s (eV) = \left[E_{\text{surf}} - \sum_{i=1}^{n_{\text{metal}}} E_{\text{metal-CoFeO}_4\text{-calix}(i)} - \sum_{i=1}^{n_{\text{calix}}} E_{\text{calix}(i)} - \sum_{i=1}^{n_{\text{metal-adsorb}}} E_{\text{metal-adsorb}} \right] \times \epsilon_{\text{surf}}$$ (1)

That ΔE_s is the adsorbs energies, the electron-localization-function or ELF, localized-oriental-locator or LOL [89-91], electron
Density of the Gradient-norm & Laplacian, values of orbitals wave-functions, electron spin densities, electrostatic-potentials from nuclear-atomic-charges, the exchange-correlation density, as well as astoral electrostatic potentials ESP), correlation-holes and correlation-factors, and the average local ionization energies using the Multi-functional-Wave-function analyzer have also been calculated in this study [89-91].

Density Electron Approach for Interaction between Mnp's and Calix [8]

The kinetic energies densities are not defined individually, since the expected values of the operators:

\[\langle \varphi | \left(\frac{1}{2} \nabla^2 \right) \varphi \rangle \]

(2)

Can be estimated by integrating kinetic energy densities from those alternatives definitions. One of the usual used definitions is as follows:

\[k(r) = \frac{1}{2} \sum_n | \phi_n^*(r) \nabla^2 \phi_n(r) | \]

(3)

The local kinetic energies given below guarantee [89-91] hence the physical data are more commonly used. The Lagrangian of kinetic energies densities, \(G(r) \) are also known as positive definite kinetic energy densities.

\[G(r) = \frac{1}{2} \sum_n | \phi_n^*(r) \nabla^2 \phi_n(r) | + \sum_n \left[\frac{1}{2} \left(\frac{\partial \phi_n(r)}{\partial \xi} \right)^2 + \frac{1}{2} \left(\frac{\partial \phi_n(r)}{\partial \eta} \right)^2 \right] \]

(4)

\(K(r) \) and \(G(r) \) are directly related by Laplacian of electron density \(\nabla^2 \rho(r) = G(r) - K(r) \). The electrostatic potential from nuclear/atomic charges can be calculated via: \(V_{\text{nm}}(r) = \sum Z_i \frac{\rho_i}{|r - r_i|} \) where \(r_i \) and \(Z_i \) denote position vector and nuclear charge of atom \(A \), respectively, spherically averaged like-spin conditional pair probability havecorrelation with the Fermi hole and it has been suggested which the electron localization function (ELF).

\[\text{ELF}(r) = \frac{1}{1 + D(r)/D_{0(r)}} \]

(5)

Where

\[D(r) = \frac{1}{2} \sum_n | \nabla \phi_n(r) |^2 - \frac{1}{8} \left[\rho_\alpha(r) \right]^2 \beta(r) \]

and

\[D_{0(r)} = \frac{3}{10} \left(\frac{\pi}{6} \right)^{\frac{3}{2}} \left[\rho_\alpha(r) + \rho_\beta(r) \right] \]

(6)

for close-shell system, since

\[\rho_\alpha(r) = \rho_\beta(r) = \frac{1}{2} \rho \]

and \(D_{0(r)} \) terms can be simplified as

\[D(r) = \frac{1}{2} \sum_n | \nabla \phi_n(r) |^2 - \frac{1}{8} \rho(r) \]

(7)

In which the kinetic energies terms in \(D(r) \) is replaced by Kirzhnits types second-order gradients expansion, which are

\[\frac{1}{2} \sum_n | \nabla \phi_n(r) |^2 \approx D_{0(r)} + \frac{1}{72} \left[\frac{\nabla^2 \rho(r)}{\rho(r)} \right]^2 \rho(r)^2 \]

(8)

So that ELF is totally independent from the wave-function, and then can be used for analyzing electron densities from X-ray diffraction data. Localized orbital locator or LOL is another item for locating high localization regions likewise ELF, which explained by Lu T [91].

\[\text{LOL}(r) = \frac{\tau(r)}{1 + \tau(r)} \]

Where

\[(r) = \frac{D_{0(r)}}{2} \sum | \nabla \phi_i(r) |^2 \]

(9)

for spin-polarized system and close-shell system are defined in the same way as in ELF LOL have similar approaches compared to ELEN. Notice that evaluating ESP is much more time-consuming than evaluating other functions. The ESP evaluated under default value is accurate enough in general cases. Reduced density gradient (RDG) RDG are a pair of very important functions for revealing weak interaction region for detail. RDG is defined as

\[\text{RDG}(r) = \frac{1}{2} \frac{\nabla \rho(r)}{\rho(r)^3} \]

(9)

Fortunately, it is found that weak interaction analysis under pro-molecular density is still reasonable. Pro-molecular density is simply constructed by superposing electron densities of free-state atoms and hence can be evaluated extremely rapidly. \(\rho_{\text{free}}^\text{ps}(r) = \sum \rho_{\text{free},i}^\text{ps}(r - R_i) \). Where \(\rho_{\text{free},i}^\text{ps} \) is a pre-fitted spherically averaged electrons density of atom \(A \).

Result and Discussion

Table 1: (a) All Electron Densities of non-bonded interactions for CoFe_{2}O_{4}@Silica shell, (b) CoFe_{2}O_{4}@calix[8] shell and (c) CoFe_{2}O_{4} isolate.

<table>
<thead>
<tr>
<th>Atoms of CoFe_{2}O_{4}</th>
<th>Density of All Electron (10^{5})</th>
<th>Density of Alpha (10^{7})</th>
<th>Density of Beta (10^{7})</th>
<th>Spin Density</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(a)</td>
</tr>
<tr>
<td>Co(1)</td>
<td>0.28</td>
<td>0.32</td>
<td>0.12</td>
<td>0.14</td>
</tr>
<tr>
<td>Fe(2)</td>
<td>0.28</td>
<td>0.3</td>
<td>0.1</td>
<td>0.14</td>
</tr>
<tr>
<td>Fe(3)</td>
<td>0.16</td>
<td>0.28</td>
<td>0.12</td>
<td>0.08</td>
</tr>
<tr>
<td>O(1)</td>
<td>0.3</td>
<td>0.24</td>
<td>0.14</td>
<td>0.15</td>
</tr>
</tbody>
</table>

How to cite this article: Mahsa A R, Karim Z, Majid M. Study of CoFe_{2}O_{4}@ Calixarene Core-Shell as a novel catalyst . Res Dev Material Sci . 7(5). RDMS.000674.2018. DOI: 10.31031/RDMS.2018.07.000674.
<table>
<thead>
<tr>
<th></th>
<th>O(2)</th>
<th>O(3)</th>
<th>O(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.18</td>
<td>0.3</td>
<td>0.14</td>
</tr>
<tr>
<td>0.12</td>
<td>0.09</td>
<td>0.16</td>
<td>0.07</td>
</tr>
<tr>
<td>0.16</td>
<td>0.06</td>
<td>0.09</td>
<td>0.1</td>
</tr>
<tr>
<td>0.16</td>
<td>0.06</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.32</td>
<td>0.22</td>
<td>0.18</td>
<td>0.2</td>
</tr>
<tr>
<td>0.15</td>
<td>0.11</td>
<td>0.1</td>
<td>0.09</td>
</tr>
<tr>
<td>0.11</td>
<td>0.08</td>
<td>0.1</td>
<td>0.09</td>
</tr>
<tr>
<td>0.08</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.12</td>
<td>0.09</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.09</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Figure 1: The non-bonded interaction between CoFe$_2$O$_4$ and Calix [8] shell.

Figure 2: The optimized of CoFe$_2$O$_4$.

Figure 3: Color field map of electro density including molybdenum & CoFe$_2$O$_4$ inside of Calix [8].
This work basically focuses on the magnetic properties of CoFe$_2$O$_4$ in the non-bonded systems with calix[8] surfaces including “CoFe$_2$O$_4$@calix [8]”. The CoFe204@calix[8] nano-adsorbent shown high adsorption affinities for aqueous ions, specially for cation of vanadium and molybdenum and the amino-CoFe$_2$O$_4$@SiO$_2$ exhibited high adsorbent for vanadium and molybdenum ions, resulting from complexation of the metals ion with the surface amino groups. The metalloated CoFe$_2$O$_4$@calix[8] nano-particles could...
be recovered easily from aqueous solution by magnetic separation. The data have shown in Figure 1-7 and Table 1. As it is indicated in Table 1, LOL is low and constant for both CoFe$_2$O$_4$@silica, CoFe$_2$O$_4$@calix[8] and CoFe$_2$O$_4$@calix[8]. ELF has a similar expression as LOL. The non-bonded interactions are shown in Figure 1-7. The electrical properties can be obtained from changes in the non-bonded interactions. Potential energy densities, ELF, LOL, electron densities, energy densities, eta index and ECP are shown Table 1. The results of ELF and LOL indicate that the surfaces of silica and calix[8] are suitable to attach in aromatic and organic compounds in any scale from nano to micro or medium.

Figure 7: Density of state for energy absorption of Molybdenum and Vanadium in CoFe$_2$O$_4$@Calix[8].

The interaction energy between two sides of CoFe$_2$O$_4$-silica and CoFe$_2$O$_4$-calix [8] are also calculated in Table 1. This problem will remove by replacing the calix[8] instead of SiO$_2$ as a shell of CoFe$_2$O$_4$. In addition, functional groups on the coating layer chemically adhering to the MNPs are also assailable to acid treatment. In contrast of SiO$_2$ rings which is stable under acidic conditions the calix [8] rings is independent from acidic situations and hence for calix[8] comparing to SiO$_2$, the function is not needed as an ideal shell composite to protect the inner magnetite core. Although CoFe$_2$O$_4$@SiO$_2$ or Silica-coated core-shell magnetite nanoparticles have recently been investigated for potential biomedical applications, by this work we exhibit the calix [8] is much useful for removing the earth/alkali metal from the aqueous solution Table 1. Relative adsorption energies of four transition metal ions such as vanadium and molybdenum on CoFe$_2$O$_4$@calix[8] have investigated.

Conclusion

We think that calix[8] capabilities of magnetic substrates should be explored in the near future. Another interesting development is using the calix[8] on magnetic-nano-particle enables effective removal of transition metals such as vanadium and molybdenum metals based on catalysts forms important pharmaceutical products in the drug nanotechnology. Our Calculations indicate that the calix[8] is suitable surfaces for CoFe$_2$O$_4$ such silica surfaces for removal metal ions such as vanadium cations and molybdenum.

References

How to cite this article: Yoon TJ, Lee W, Oh YS, Lee JK (2003) Magnetic nanoparticles as a catalyst

Kaxiras E, Jackson K, Pederson MR (1994) Theoretical study of passivated small fullerences C_nX_3 (X=PA,NS) and their isoelectronic equivalents (BN)$_n$X$_3$. Chemical Physics Letters 225(4-6): 448-453.

Monajjemi M (2012) Quantum investigation of non-bonded interaction between the B_nN_m ring and BH$_n$NBH$_n$(radical, cation, anion) systems: a nanomolecularmotor. Structural Chemistry 23(2): 551-580.

How to cite this article: Mahsa A R, Karim Z, Majid M. Study of CoFe$_2$O$_4$@Calixarene Core-Shell as a novel catalyst. Res Dev Material Sci. 7(5). RDMS.000674.2018. DOI: 10.31031/RDMS.2018.07.000674