Deep–Level Transient Spectroscopy and X–Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation

Alireza Heidari*
Faculty of Chemistry, USA

*Corresponding author: Alireza Heidari, Faculty of Chemistry, CA 92604, USA,
Submission: May 21, 2018; Published: July 18, 2018

Image Article

In the current study, we have experimentally and comparative-ly investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Deep–Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figure 1 & 2) [1–141].

Figure 1: Deep-level transient spectroscopy analysis of malignant human cancer cells and tissues; 1a: before, 1b: after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1–141].

Figure 2: X-Ray Photoelectron Spectroscopy (XPS) analysis of malignant human cancer cells and tissues; 1a: before and 1b: after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1–141].
Conclusion

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1 & 2) [1-141].

References


18. Heidari A (2016) Measurement the amount of vitamin D2 (Ergocalciferol), vitamin D3 (Cholecalciferol) and absorbable calcium (Ca²⁺), iron (III) (Fe³⁺), magnesium (Mg²⁺), Phosphate (PO₄³⁻) and Zinc (Zn²⁺) in apricot using high-performance liquid chromatography (hplc) and spectroscopic techniques. J Biom Biostat 7: 292.

19. Heidari A (2016) Spectroscopy and quantum mechanics of the helium dimer (He₂), neon dimer (Ne₂), argon dimer (Ar₂), krypton dimer (Kr₂), xenon dimer (Xe₂), radon dimer (Rn₂) and ununoctium dimer (Uuo₂) Molecular Cations. Chem Sci J 7: e112.


How to cite this article: Alireza Heidari. Deep-Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation. Res Dev Material Sci. 7(2). RDMMS.000059.2018. DOI: 10.31031/RDMS.2018.07.000059


52. Heidari A (2016) Graph theoretical analysis of zigzag polyhexamethylene biguanide, polyhexamethylene adipamide, polyhexamethylene biguanide gauze and polyhexamethylene biguanide hydrochloride (PHMB) boron nitride nanotubes (BNNTs), amorphous boron nitride nanotubes (α-BNNTs) and hexagonal boron nitride nanotubes (β-BNNTs). J Appl Comput Math 5: e143.


68. Heidari A (2017) Electronic coupling among the five nanomolecules shuts down quantum tunneling in the presence and absence of an applied magnetic field for induction of the dimer or other provide different influences on the magnetic behavior of single molecular magnets (SMMs) as qubits for quantum computing. Glob J Res Rev 4: 2.

69. Heidari A (2017) Polymorphism in nano-sized graphene ligand-induced transformation of Au38-xAgxXCu(x)SPh-Bu24 to Au36-xAgxXCu(x)SPh-Bu24 (x=1-12) nanomolecules for synthesis of Au144-xAgxXCu(x)SPh-SR24, (SC)60, (SC)60, (SC)1260, (PET)60, (p-MBA)60, (F)60, (CI)60, (Br)60, (I)60, (Ag)60, (Us)60 and (SC)6H13:60 nano clusters as anti-cancer nano drugs. J Nanomater Mol Nanotech 6: 3.


96. Heidari A (2017) Potency of human interferon β-1a and human interferon β-1b in enzymotherapy, immunotherapy, chemotherapy, radiotherapy, hormone therapy and targeted therapy of encephalomyelitis disseminate/multiple sclerosis (MS) and hepatitis a, b, c, d, e, f and g virus enter and targets liver cells. J Proteomics Enzymol 6(1).


105. Alireza Heidari (2017) Vibrational dechirist (Hz), centhertz (Hz), millihertz (MHz), microhertz (μHz), nanohertz (nHz), picohertz (pHz), femtohertz (fHz), attohertz (aHz), zeptohertz (zHz) and yoctohertz (yHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. International Journal of Biomedicine 7(4): 335-340.


118. Alireza Heidari (2017) Vibrational decahertz (daHz), hectohertz (hHz), kilohertz (kHz), megahertz (MHz), gigahertz (GHz), terahertz (THz), petahertz (PHz), exahertz (EHz), zettahertz (ZHz) and yottahertz (YHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. Madridge J Anal Sci Instrum 2(1): 41-46.


