Deep–Level Transient Spectroscopy and X–Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation

Alireza Heidari*
Faculty of Chemistry, USA

*Corresponding author: Alireza Heidari, Faculty of Chemistry, CA 92604, USA,
Submission: May 21, 2018; Published: July 18, 2018

Image Article
In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Deep–Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figure 1 & 2) [1–141].

Figure 1: Deep-level transient spectroscopy analysis of malignant human cancer cells and tissues; 1a: before, 1b: after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1–141].

Figure 2: X-Ray Photoelectron Spectroscopy (XPS) analysis of malignant human cancer cells and tissues; 1a: before and 1b: after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1–141].
Conclusion

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1 & 2) [1–141].

References

18. Heidari A (2016) Measurement of the amount of vitamin D2 (Ergocalciferol), vitamin D3 (Cholecalciferol) and absorbable calcium (Ca2+), iron (II) (Fe2+), magnesium (Mg2+), Phosphate (PO43-) and Zinc (Zn2+) in apricot using high-performance liquid chromatography (hplc) and spectroscopic techniques. J Biomol Stat 7: 292.
19. Heidari A (2016) Spectroscopy and quantum mechanics of the helium dimer (He2), neon dimer (Ne2), argon dimer (Ar2), krypton dimer (Kr2), xenon dimer (Xe2), radon dimer (Rn2) and ununotium dimer (Uuo2) Molecular Cations. Chem Sci 7: e112.


52. Heidari A (2016) Graph theoretical analysis of zigzag polyhexamethylene biguanide, polyhexamethylene adipamide, polyhexamethylene biguanide and polyhexamethylene biguanide hydrochloride (PHMB) boron nitride nanotubes (BNNTs), amorphous boron nitride nanotubes (a-BNNTs) and hexagonal boron nitride nanotubes (h-BNNTs). J Appl Computat Math 5: e143.


54. Heidari A (2016) A comparative study on conformational behavior of isoretinoin (13-Gis Retinoic Acid) and Tretinoin (All-Trans Retinoic Acid (ATRA)) nano particles as anti-cancer nano drugs under synchrotron radiations using hartree-fock (HF) and density functional theory (DFT) methods. Insights in Biomed 1: 2.


68. Heidari A (2017) Electronic coupling among the five nanomolecules shuts down quantum tunneling in the presence and absence of an applied magnetic field for indication of the dimer or other provide different influences on the magnetic behavior of single molecular magnets (SMMs) as qubits for quantum computing. Glob J Res Vet 4: 2.

69. Heidari A (2017) Polymorphism in nano-sized graphene ligand-induced transformation of Au38-xAgx/Cnx(SPh-tBu)24 to Au36-xAgx/Cnx(SPh-tBu)24 (x=1-12) nanomolecules for synthesis of Au144-xAgx/Cnx(SR)60, (SC6H4)60, (SC6H6)60, (PC6H12)60, (PET)60, (p-MBA)60, (Cl)60, (Br)60, (I)60, (At)60, (Uus)60 and (SC6H13)60 nanoclusters as anti-cancer nano drugs. Nanomater Mol Nanotech 6: 3.


113. Alireza Heidari (2017) Vibrational dechirpt (Hz), centhertz (Hz), millihertz (mHz), microhertz (uHz), nanohertz (nHz), picohertz (pHz), femtohertz (fHz),attohertz (aHz), zeptohertz (zHz) and yoctohertz (yHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. International Journal of Biomedicine 7(4): 335-340.


118. Alireza Heidari (2017) Vibrational decahertz (dhz), hectohertz (hzh), kilohertz (kzh), megahertz (MHz), gigahertz (GHz), terahertz (THz), petahertz (PHz), exahertz (EHz), zettahertz (ZHHz) and yottahertz (YHHz) imaging and spectroscopy comparative study on malignant and benign human cancer cells and tissues under synchrotron radiation. Madridge J Anal Sci Instrum 2(1): 41-46.


