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Abstract 

Silicon nanomembranes are thin, free standing sheets of single or poly-crystalline silicon, typically less than a micrometer thick, with lateral
dimensions exceeding the thickness by several orders of magnitude. Nanomembranes have applications in flexible electronics, pressure sensing,
photonic and phononic devices, sample mounts for microscopy, windows and beam splitters for optical and x-ray scattering measurements, and as
a model system to perform fundamental investigations of nanoscale phenomena. This review covers fabrication processes for creating single crystal
nanomembranes from a silicon-on-insulator (SOI) wafer as the starting material.




Introduction

Freestanding nanomembranes provide an ideal system for
advancing nanoscience as well as for developing nanotechnologies.
In addition to the advantages that crystalline silicon brings as
an inexpensive semiconductor material with extremely well
understood electronic and thermal properties and established
processing methods, single crystal silicon membranes are
particularly useful due to their superior mechanical properties:
they are strong, flexible, stretchable, bondable and highly resistant
to thermal and mechanical fatigue. The primary methods for
fabricating single crystal nanomembranes use silicon-on-insulator
(SOI) wafer as the base material, which also makes such devices
easily compatible with SOI-based microelectronics
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Figure 1:    From [12] (a) Fabrication steps for producing nanomembranes from SOI. Parts (i) - (v) depict traditionally used silicon
processing steps that typically result in buckled nanomembranes. Part (vi) is a modification to the process that flattens the membrane. (b) The mechanism for membrane flattening relies on the interfacial energy between silicon and water.




A primary hurdle in the fabrication of thin, flat nanomembranes
arises from built-in compressive strains in the device layer of the
SOI wafer. The fabrication process generally involves lithographic
patterning and selective etching through the handle and buried
oxide (BOX) layers of the SOI wafer, converting a selected region
of the device layer into a freestanding membrane supported
only along its edges (Figure 1). This process results in buckled
nanomembranes due to the removal of the underlying support
structure holding the compressively strained device layer in place
[1-5]. The extent of buckling can be large enough to restrict theusefulness of the membrane structure, especially in microelectronic
and micromechanical applications. Several approaches have
therefore been used to mitigate this buckling and produce flat
nanomembranes.



Discussion

One class of approaches is to completely release the membrane
from the parent SOI and transfer it to a second frame. This can
be done, for instance, by etching the BOX layer under the device
layer through a series of etch holes and floating off the resulting
membrane [6]. Another method involves a thermal expansion to
compensate for the compressive device layer strains, followed by
a direct wafer bonding step to transfer the device layer to a second
substrate [7]. These techniques are particularly useful if a framing
substrate other than the parent SOI wafer is desired.



On the other hand, several applications, especially those
involving microelectronics and sensing have no need for a different
framing substrate, or in fact, prefer the membrane to remain in
its original SOI frame. A second class of approaches retains the
membrane on the SOI wafer it was fabricated from, but uses one
of several methods to flatten the membrane by compensating for
the compressive strain in the device layer. For instance, significant
flattening of the membranes can be achieved by patterning the
device layer to create strain relief structures that accommodate
the majority of the compressive strain, leaving the suspended
membrane region relatively flat [1,8,9]. A more controlled approach
that puts the membrane in tension uses a silicon nitride over layer
to frame the edges of the membrane and introduce a tensile strain
that overcomes the inherent compressive strain in the device layer
[10,11].


An alternative approach to creating flat nanomembranes in
the parent SOI embraces the phenomenon of stiction, which is
painstakingly avoided in traditional MEMS fabrication. In this
process, the interfacial energy between silicon and water is used
to put the membrane in a meta-stable tensile state [12]. Buckling
amplitudes on the order of several micrometers are replaced by
flat membranes with thicknesses as low as 5nm and out of plane
deviations no larger than 10nm over a region spanning more
than 100µm across. These flat membranes can be subsequently
stabilized by a directed UV exposure followed by a thermal anneal,
which bonds the membrane more strongly to the underlying
silicon ledges and relieves some of the tensile strain and strain in
homogeneity in the membranes. Membrane tension is monitored
through a series of pressure tests, whose results are compared with
finite element models (FEM) of the membrane deflection under
uniform pressure loading (Figure 2).
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Figure 2:  (a) Deflection of a 100nm thick membrane at a pressure of 20psi, measured by white light interferometry. (b) FEM solution of the same membrane under the same conditions. (c) Membrane strain map from the FEM analysis.
Note: Displacements in the z-direction are exaggerated to display the membrane shape.




Conclusion

Several processes have been developed for the fabrication
of thin, flexible single crystal silicon nanomembranes. These
membranes serve as model systems to investigate nanoscale size
effects on electronic transport [13,14], phonon dispersions [15-19]
and heat transfer [20,21]. Further modification of the membranes
by lithographic patterning [22] or strain engineering [23] leads
to additional functionalities such as photonic devices and flexible
electronics. Recent work has extended the use of these techniques
to other materials, such as germanium, silicon-germanium multilayers,
and silicon-silicon dioxide hetero-structures [24-26] further
expanding the scope of potential applications.
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