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Abstract

The molecular-level reinforcement mechanisms of high-loading SWCNTs in Aramid III fibers, critical
for aerospace/defense applications, remain poorly understood. Here, we employ PCFF and GAFF
all-atom MD simulations coupled with bond dissociation energy analysis and Savitzky-Golay filtering
to interrogate pristine and 3 wt% SWCNT-doped Aramid III fibers. Tensile simulations at 10*°s™*
reveal a marked decrease in ultimate tensile stress from 0.80GPa to 0.08GPa upon CNT incorporation,
indicating stress-concentrating aggregates that embrittle the matrix. Bond dissociation energies quantify
vulnerable amide linkages (86.0-86.6kcal/mol) versus robust aromatic C-C bonds (126.6kcal/mol).
Temperature-programming studies demonstrate that slow heating (0.15K/ps) stabilizes the interfacial
binding energy at -200kcal/mol, ~30kcal/mol higher than rapid heating (-230kcal/mol). Integrating an
180ps NPT equilibration with accelerated heating reduces computational steps by 91.6% (from 1.8x10”
to 1.5x10°) without compromising stability. Collectively, these findings elucidate the dual stiffening-
brittleness transition induced by high CNT loadings and establish a multiscale MD workflow that
balances accuracy and efficiency, offering actionable guidelines for designing advanced CNT-reinforced
polymer fibers.
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Introduction

Aramid I1II, an advanced polymeric fiber developed through the strategic incorporation
of a third monomer into the poly (p-phenylene terephthalamide) backbone, demonstrates
superior performance metrics compared to conventional aramid fibers. This structural
innovation endows Aramid III fibers with exceptional tensile strength, significantly
surpassing that of traditional engineering polymers such as nylon, polyester, and glass-
reinforced composites [1]. Inheriting the advantageous characteristics of conventional
aramid fibers-including low density, high specific strength/stiffness, thermal stability, impact
resistance, and radar-wave transparency [2,3]. Aramid III has emerged as a critical material
for aerospace engineering, military armor systems, and advanced composite applications [4].
Nevertheless, the mechanical properties of Aramid III, particularly its tensile performance,
remain substantially below theoretical predictions, leaving significant room for improvement
to meet increasingly demanding application requirements.

Carbon Nanotubes (CNTs) have garnered significant attention as reinforcing agents
in polymer composites due to their unique electrical, thermal, and mechanical properties
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[5]. Characterized by exceptional specific strength and modulus,
CNTs’ nanoscale dimensions and high surface area enable
substantial enhancement of matrix performance in composites [5].
Incorporation of CNTs into Aramid III fibers presents a promising
strategy to further improve mechanical properties and functional
characteristics, thereby expanding application potential. Notably,
Luo et al. [6] achieved a 26% tensile performance enhancement
in Aramid III through coarse-grained simulations with 0.03wt%
amine-functionalized CNTs, while Yan et al. [7] demonstrated a
22% improvement in simulated tensile properties using 0.025
wt% single-walled CNTs. Conventional coarse-grained simulations
exhibit inherent limitations in capturing molecular interactions,
intramolecular

forces and

coupled with quantum

particularly weak interfacial

connectivity. All-atom simulations
mechanical calculations enable precise characterization of material
behaviors at the atomic scale [8]. During tensile simulations, bond
dissociation energy analysis derived from quantum chemical
computations proves critical for elucidating mechanical failure
mechanisms. Higher dissociation energies indicate chemical
bonds with superior resistance to rupture under tension, directly
correlating with enhanced fracture toughness; conversely, lower
values suggest vulnerable bonds prone to premature failure.
This analytical approach not only facilitates structural stability
assessment through identification of weak molecular linkages but
also provides essential validation for computational models via
energy threshold comparisons.

To elucidate the microstructure-property relationship in high-
concentration CNT-doped Aramid III fibers, José Cobefia-Reyes et
al. [8] conducted complementary analysis using OPLS4 and ReaxFF
force fields.

Their comparative validation revealed that all-atom force
fields, when properly parameterized, can effectively simulate bond
rupture during tensile deformation with computational efficiency
comparable to reactive force field methods. This dual-force-field
approach not only enables accurate prediction of composite
mechanical behavior but also provides critical theoretical guidance
for experimental optimization of nanofiber reinforcement
systems. We integrate Bond Dissociation Energy (BDE) analysis
with all-atom molecular dynamics simulations under the PCFF
and GAFF force fields to interrogate the tensile behavior of both
pristine and 3 wt% SWCNT-doped Aramid III fibers [9,10]. Uniaxial

deformation simulations quantify the effects of high-concentration

SWCNT incorporation on tensile stiffness, ultimate strength,
and elongation at break, while complementary binding energy
calculations-conducted under rapid (10K/ps) and slow (0.15K/
ps) heating protocols-elucidate the influence of thermal history
on CNT-polymer interfacial interactions. Furthermore, by mapping
vulnerable bond sites identified via BDE computations onto the
simulated stress-strain responses, we reveal the molecular origins
of defect initiation and reinforcement mechanisms, thereby
establishing a robust theoretical framework for the design of
high-loading CNT-reinforced polymer nanocomposites.

Models and Methods
Calculation of bond dissociation energy

Obabel was used to convert the SMILES string to generate
the Aramid III monomer [11]. The molecular structure was pre-
optimized using MOPAC at the PM6-DH+ level [12-14], and finally,
Orca5.0 was employed to calculate the Bond Dissociation Energies
(BDEs) of four bonds in the monomer [15]. The preliminary
optimized structure facilitates easier geometric convergence and
reduces the optimization time under subsequent DFT-level analysis.
PM6-DH+ is a modified PM6 method implemented in MOPAC
that, compared to previous methods, enhances the description
of dispersion interactions and the correction of hydrogen bonds,
making it particularly suitable for molecules like Aramid III
with strong dispersion effects. Additionally, Korth et al. [12]
demonstrated that PM6-DH+ yields slightly improved geometries
relative to other semi-empirical methods based on PM6. Geometry
optimizations were carried out at the B3LYP-D3/6-31+G* level of
theory [16-23], and vibrational analyses were performed at the
B3LYP-D3/def2-TZVP level [24]. Previous literature [8,25] has
identified the amide bond as having the lowest bond energy in
aromatic polyamide structures; therefore, only the changes in bond
energy associated with the amide bonds and the newly formed
heterocyclic bonds (Figurel) were calculated. Here, the BDE is
defined as the standard enthalpy change difference between the
whole molecule and its homolytically cleaved fragments. Due to
residual discrepancies between Orca-calculated energies and the
required thermodynamic enthalpy changes, the Shermo software
[26] was used for further thermodynamic calculations. The Orca
output files were converted with Multiwfn [27,28], the Shermo
temperature was set to 278.5K, and the correction factor was
adjusted to 0.9850 [29].

Cpa-Cbe

Figure 1: Aramid IIIl monomer with the bonds evaluated in the bond dissociation calculation labeled. C-N_X
corresponds to the amide bond at different distances from the heterocyclic ring, and Cpa-Cbe corresponds to the
C-C bond between the heterocyclic ring.
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Molecular dynamic details

We employed Material Studio 8.0 to construct the polymer
model. After performing a Monte Carlo conformational search on
the Aramid III molecules, polymerization and model construction
were carried out with a Degree of Polymerization (DP) set to 10. To

better simulate the one-dimensional nature of fibers, a 5nm vacuum
layer was added above and below the model. For precise control of
the carbon nanotube content, a weight fraction of 3% was used. As
shown in Figure 2, two models were constructed: one containing
62 Aramid IIl molecular chains and another with 62 Aramid chains

incorporating 3 carbon nanotubes (Figure 3).

A
5£m

Figure 2: The picture on the left shows pure aramid III fiber. On the right is a simulation diagram of 3 wt% carbon

Figure 3: (a) Initial configuration of aramid III with a size of 20x20x20nm?, which are equivalent to 7120 atoms. (b)

nanotube-doped aramid III fiber.

S

Initial position of the carbon nanotube, which contains 100 atoms.
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We subsequently performed molecular dynamics simulations
using LAMMPS [30]. The model construction and subsequent
dynamics calculations employed the CLASS2 version of the PCFF
force field, which accurately describes bond, angle, dihedral, and
improper interactions and is suitable for complex organic and
inorganic molecular systems. Coulomb interactions were treated
by the long-range corrected PPPM method. During the simulation,
initial velocities were assigned according to the Maxwell
distribution, and temperature and pressure were controlled using
the NVE, NPT, and NVT integration schemes, respectively, while the
neighbor list was updated via binning.

To locate the global minimum energy configuration, we first
performed geometry optimization using the conjugate gradient
method, followed by initial equilibration of the system under the
NVE ensemble with a time step of 0.1fs for 10ps. Thereafter, further
equilibration was conducted in the NPT ensemble at 300K under
isothermal-isobaric conditions with a time step of 0.1fs for 25ps,
using Nosé-Hoover temperature and pressure control [31-33]. A
subsequent equilibration was carried out in the NVT ensemble at
300K under isothermal-isochoric conditions with a time step of
0.1fs for 25ps. Tensile simulations were then performed in the NPT
ensemble at a strain rate of 10*°s™* with a time step of 0.05fs over
200,000 steps, corresponding to a tensile strain of 10%. System
states and thermodynamic data were periodically output during
the simulation to analyze the material’s mechanical behavior and
performance under tension. Owing to the potential instability
during tensile simulations that may introduce noise into the stress-
strain curves, we employed a Savitzky-Golay filter for denoising
analysis of the data [34]. The window size was set to 101 (an odd
number), and the polynomial order was set to 3. The smoothing
process of the Savitzky-Golay filter can be regarded as a convolution
process, whereby the raw data are convolved with a specific kernel
(i-e., the filter coefficients ci).

P(tg) = e,y (1 +j) 1)

Inthis formulation, (¢, + j) representsadatapointin the original
sequence ¢, denotes the corresponding convolution kernel (filter
coefficients), and 7 (%) signifies the filtered data point at position t .
This process mimics the convolution operation in signal processing,
where the kernel slides across the signal while computing weighted
sums at each position. For Savitzky-Golay filters, the convolution
coefficients ¢, are specifically derived from the least-squares
optimization of polynomial fitting. These optimized coefficients not
only determine the smoothing characteristics of the filter but also
ensure preservation of the underlying data trends. The essential
mechanism of this convolution operation lies in its sliding-window
implementation combined with local polynomial fitting, effectively
suppressing high-frequency noise components while retaining the
low-frequency signal constituents and original trends.

Molecular dynamics simulations of interfacial binding

To investigate the correlation between binding energy and
conformational evolution in Carbon Nanotube (CNT)/Aramid III
composites, we constructed a 3wt% CNT-incorporated Aramid

III model using the GAFF force field. To rigorously quantify the
interaction energy of short-fiber CNTs, two CNTs were strategically
incorporated within a single system. Given the system'’s high rigidity,
MMFF94 charges were employed for distribution [35]. Considering
the viscoelastic nature of polymers and restricted molecular chain
mobility, combined with the computational demands of all-atom
force field simulations involving tens of thousands of atoms, the
initial configuration was generated using Packmol. This involved
random dispersion of 16 aramid chains and two 1-nm CNTs within
a 20x20x20nm? simulation box [36].

The viscoelastic nature of polymer materials and their restricted
molecular mobility become particularly pronounced in molecular
dynamics simulations, manifesting as significant conformational
changes during initial equilibration - a key rationale for employing
Packmol in system configuration. We designed binding energy
calculations during this equilibration phase, implementing
sequential energy minimization followed by NVE ensemble
integration. The system gradually heated from 0K to 280K using
the Berendsen thermostat and pressure control strategy [37],
while monitoring the interaction energy between Aramid III and
CNTs. Two distinct heating rates (0.15K/ps and 10K/ps) were
systematically evaluated to probe rate-dependent effects.

Model development via GROMACS-moltemplate
integration
Polymer simulations present significant computational

challenges due to their inherent memory-intensive nature
from high molecular weights, demanding specialized software
solutions. Critical force field parameter matching was addressed
through complementary use of GROMACS (GROningen MAchine
for Chemical Simulation) [38] and LAMMPS (Large-scale Atomic/
While GROMACS
benefits from extensive automated tools and broad user adoption,
LAMMPS excels in materials simulation through comprehensive
potential support (e.g, EAM for metals) and versatile deformation
capabilities. We developed an interoperability script bridging these
platforms via Moltemplate, LAMMPS’s molecular preprocessing
tool [39], enabling seamless conversion of GAFF-parameterized
GROMACS.gro files into Moltemplate.lt format.

Molecular Massively Parallel Simulator).

This workflow leverages GROMACS for preliminary treatments
(e.g., thermal annealing) followed by efficient NPT equilibration
in LAMMPS, capitalizing on each software’s strengths. The
process addresses two
components: molecule.lt for structural definitions and forcefield.

conversion primary Moltemplate
It for interaction parameters. Key transformations involve: (1)
Coordinate system adaptation and unit conversion; (2) Force field
parameter translation between GROMACS funtypes and LAMMPS
styles: GAFF’s harmonic bond stretching (bond_style harmonic),
harmonic angle bending (angle_style harmonic), charmm dihedrals
(dihedral_style charmm), cvff impropers (improper_style cvff),
and Lennard-Jones potentials (pair_style lj/charmm/coul/long).
Notably, the script preserves theoretical formulations without
modification and currently remains exclusive to the GAFF force
field without robustness validation.
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Result and Discussion

The calculated bond dissociation energies revealed distinct
structural characteristics: three amide bonds exhibited relatively
low energies while the Cpa-Cbe bond demonstrated significantly
higher strength (126.5583kcal/mol), consistent with LAMMPS MD
simulations (C-N<Cpa-Cbe) (Table 1). Under uniaxial tension at 10°s’
! (processed with Savitzky-Golay filtering, Figure 4), the simulated
tensile strength showed qualitative agreement despite system size
limitations. The ultimate tensile stress decreased markedly from
0.8GPa to 0.08GPa with 3wt% CNT incorporation. As visualized in
Figure 4d, localized deformation predominantly occurred near CNTs
when employing LAMMPS'’s deform module for box-scale stretching.
This stress concentration and defect generation at CNT-rich regions
correlated with significantly enhanced material rigidity, evidenced
by characteristic stress-strain responses that align with reported

Stress-Strain Curve with Savitzky-Golay Smoothing
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nanocomposite  behaviors [40,41].
binding energy evolution during 0-280K heating displayed notable
rate effects, as quantified in Figure 5. Distinct heating rates (0.15

vs. 10K/ps) induced measurable variations in interfacial energy

Temperature-dependent

profiles, highlighting kinetic influences on composite stabilization.

Table 1: Bond dissociation energies obtained in orca at the
B3LYP-D3/def2-tzvplevel of theory show that C-N has the
lowest BDE energy.

Bond Bond Energy [kcal:mol*]
C-N_1 86.0398
C-N_2 86.6246
C-N_3 86.6122
Cpa-Cbe 126.5583

Stress-Strain Curve with Savitzky-Golay Smoothing
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Figure 4: Tensile stress-strain curve of aramid Il fiber with different concentration of SWNT. (a) Pure aramid IIl fiber
stress-strain curve. (b) 3% concentration of carbon nanotubes doped aramid Il fiber stress-strain curve. The blue
is the original image, and the red curve is after fitting. (c) Stable structure of composite fiber before stretching. (d)

Morphology of Aramid Il composite fiber after stretching.

Figure 5(a) reveals that rapid heating (10K/ps) induces
structural instability, though subsequent 180-ps NPT equilibration
stabilized the binding energy at -230kcal/mol. Conversely, gradual
heating (0.15K/ps) in Figure 5(b) achieves energy stabilization
(-200kcal/mol) through progressive molecular rearrangement,

indicating spontaneous interfacial equilibrium between the

polymer matrix and Carbon Nanotubes (CNTs) under optimal
dispersion conditions. The #30kcal/mol disparity between heating
protocols reveals conformation-dependent binding characteristics
in polymer nanocomposites. Comparative analysis of Figure 5a &
Figure 5b demonstrates that extended equilibration at 280K after
rapid heating yields lower binding energy (-230kcal/mol) than
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slow-heating counterparts (-200kcal/mol). simulation step size is
0.1fs. Heating up to 180K at a rate of 0.15K/ps requires 1.8x10’
steps. 10K/ps reaches a sufficiently low binding energy at 1.5x10°
steps, and the simulation time is reduced by 91.6%. This suggests
accelerated protocols could potentially reduce computational time

0
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while requiring careful stability monitoring to prevent simulation
collapse. The reduced binding energy under gradual heating
conditions (-200kcal/mol) stems from sufficient chain relaxation
that minimizes steric hindrance effects, reflecting the time-
dependent viscoelastic nature of polymers.
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Figure 5: (a) A binding energy curve with a warming rate of 10K/ps, the structure is stable in subsequent NPT
equilibrium; (b) A binding energy curve with a warming rate of 0.15K/ps, the structure is in equilibrium very early,
with only minor adjustments thereafter.

The significant binding energy variations (A~30kcal/
mol) emphasize heating rate’s critical role as a processing
parameter. Optimized thermal protocols enable precise control
over nanocomposite microstructure through tailored interface
engineering, modulating  macroscopic
performance. These findings provide crucial guidance for balancing
computational efficiency and simulation stability in molecular
dynamics studies, while highlighting temperature-programming
strategies as key determinants in composite material design.

thereby material

Conclusion

This the mechanical
enhancement mechanisms of Single-Walled Carbon Nanotubes
(SWCNTs) in aramid III fibers through molecular dynamics

study systematically investigates

simulations and bond dissociation energy analysis, revealing a
concentration-dependent reinforcement effect where optimal
SWCNT incorporation (<3wt%) improves tensile strength and
stiffness while reducing elongation at break, consistent with existing
literature, though beyond 3wt%, SWCNT agglomeration generates
stress-concentration sites and structural defects, degrading
composite strength despite higher interfacial binding energy.
Notably, bond dissociation energy calculations identify vulnerable
amide bonds (C-N: 86kcal/mol) and robust aromatic linkages
(Cpa-Cbe: 126.6+3.4kcal/mol) that correlate with observed tensile
failure patterns, while thermal protocol optimization demonstrates
that controlled slow heating (0.15K/ps) facilitates polymer chain
relaxation, reducing interfacial binding energy by x30kcal/mol
compared to rapid heating (10K/ps), though strategic combination

of accelerated heating with subsequent NPT equilibration (180ps)
achieves 91.6% computational time reduction(1.8x107 step into
1.5x10° steps) while maintaining simulation stability. These
computational insights establish fundamental structure-property
relationships in CNT-reinforced aramid composites, providing
a theoretical framework for optimizing high-performance
nanocomposites through precise concentration control to prevent
agglomeration, thermal history engineering to balance processing
efficiency and interface quality, and molecular-scale reinforcement
design targeting critical bond types, with the developed multiscale
methodology offering a robust approach for designing advanced

fiber composites with tailored mechanical performance.
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