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Introduction
A polymer composite, in simple description, can be considered as a sophisticated multi-

phase material in which reinforcing fillers are intricately combined with a polymer matrix. 
This integration results in a synergistic enhancement of mechanical properties that cannot 
be attained by either component individually [1-3]. Such infusion of multiple component 
materials results in a final product with properties that surpass those of each individual 
constituent material. There are numerous compelling factors that can lead to the preference 
for new materials. Examples include materials that offer cost-efficiency, reduced weight, 
increased strength, enhanced durability [4-6] etc, compared to conventional materials. 
The distinct advantage of polymer matrix composites, in contrast to metals, lies in their 
manufacturing process that enables the production of intricately shaped components while 
offering lower density. This not only contributes to reduced fuel consumption in applications 
such as aviation and automotive industries but also facilitates higher speeds in competitive 
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sports, longer ranges for missiles, and greater payload capacities in 
transportation [7,8]. 

 In the majority of polymeric composite fabrication processes 
aimed at achieving desired material compositions, the primary 
challenges revolve around selecting the appropriate fibers, 
effectively distributing various phases, optimizing the aspect ratio 
of fibers, determining the spatial arrangements of continuous or 
short fibers, and devising an efficient process patterning strategy. In 
general, composite materials consist of one or more discontinuous 
phases dispersed within a continuous phase. In ‘hybrid’ composites, 
multiple discontinuous phases of varying natures are present [9,10]. 
The continuous phase is commonly referred to as the ‘matrix,’ 
while the discontinuous phase is termed as the ‘reinforcement’ 
material. By incorporating high-tensile strength reinforcements 
with exceptionally high modulus into a polymer matrix, it becomes 
feasible to enhance both the mechanical and thermal properties 
significantly. Additions of nano carbon materials [11,12] are trend to 
synthesize multifunctional composites. Also mechanical, electrical 
and thermal properties of these composites are fully customizable. 
Conducting fillers such as graphite-based nanostructures, carbon 
nanotubes, and carbon nanofibers are used as reinforcing agents 
for enabling the conducting behavior of epoxy resin. 

Reinforcement Materials in Polymer Composites
Influencing properties of bulk materials by nano reinforcements 

are decade trend [13-16]. Hollow Glass Microspheres (HGMs) 
have low density and high strength with good thermal properties 
and thus can be employed in polymer matrix to form closed cell 
porous foams called syntactic foam. Unlike much other chemically 
synthesized polymeric foam, these syntactic foams have good 
mechanical, thermal and damping properties due to the presence 
of HGM into the polymer. These syntactic foams are used as 
buoyancy aid materials for marine applications [17]. These closed 
pore structures impart increased specific strength, reduced density, 
reduced coefficient of moisture absorptions and prevents thermal 
and electrical transports [18-22]. Syntactic foam properties are 
tailorable to good range and can be casted to any intricate shapes. 
Properties tailor ability is achieved either varying the volume 
fraction of HGM or by selecting HGM with suitable density (which 
depends on the shell thickness of HGM) [22,23]. Due to its reduced 
weight and improved specific properties attentions are given to use 
these composites for aerospace and marine structures as payload 
will be increased significantly [24,25]. The other applications of 
syntactic foams are discussed in [26,27]. Furthermore, previous 
works [28-30] have discussed the effects of properties on structural 
application of syntactic foams.

Nano filler reinforcement in the matrix enhances its cumulative 
properties which are attributed to commendable phase morphology 
and improved interfacial strength. Macro fillers forms finite 
interfaces with the matrix whereas, nano fillers have interfacial 
phases many folds increased [31-33]. Nano particulate syntactic 
foams are trending class of materials in which either HGM filler or 
epoxy matrix is modified by nano materials most commonly by nano 

carbon materials to achieve enhanced physical and engineering 
properties. When a small fraction of nano carbons is added to the 
composites it does not affect the density significantly and yields high 
performing multifunctional syntactic foams. Various nano carbon 
materials such as Carbon Nano Fibres (CNF), Carbon Nano Tubes 
(CNT) and Graphene (GP) evolve unique set of properties when 
reinforced with micro and bulk materials. High aspect ratio, smaller 
size and commendable mechanical properties makes carbon nano 
materials a highly preferable reinforcing material in syntactic 
foams [34-36]. Good dispersion of nano fillers in the matrix is 
crucial, as almost all the property enhancement in nano composites 
is attributed to increased interfacial phases, without which the 
adverse effect will be occurred in the composite. Entrapped voids 
during syntactic foam manufacturing are highly undesirable as it 
supports the initiation and propagation of the crack. Low density 
HGM floats on denser epoxy resin and higher viscosity of the resin-
HGM are the major causes of voids entrapment. Reinforcing nano 
particles stabilizes voids in the system [37-39] which increases the 
risk of composite failure; hence effective processing methods are 
necessary.

Graphene platelets were proved to be potential two-dimensional 
filler in syntactic foams [40-44]. Large surface areas of graphene 
provide a good surface interaction with matrix and hence stress 
transfer [45-49]. Reinforcing graphene platelets to a maximum 
volume fraction of 0.5% in epoxy based syntactic foams shows 
insignificant increase in density [45]. However it’s important to note 
that poor dispersion of graphene platelets causes its entanglement 
and wrapping which leads to voids in the composites. Its dispersion 
can be increased by functionalizing its surface to bear hydroxyl and 
amine groups. These groups make van der-wall interactions with 
the polymer and also surface roughness of GP increases which leads 
to wrinkled topology of GP and hence mechanical interlocking of 
polymer chain with GP takes place [42-45].

Synthesis and Growth Approaches
In the HGM/epoxy composite foam [50-56], the introduction of 

Nano Carbons (NCs) is carried out through two distinct approaches: 
(a) coating NCs onto the HGM surface [34,57], and (b) incorporating 
them within the matrix [42-45], as depicted in Figure 1. Chemical 
Vapor Deposition (CVD) stands out as the most commonly employed 
method for growing Carbon Nanotubes (CNT) on the surface of 
HGM, typically with a catalyst coating, where catalyst materials 
like nickel, cobalt, or ferrous are used. The CNT growth process 
involves the decomposition of carbon containing gases at elevated 
temperatures. For instance, Ephraim et al. successfully grew CNT on 
HGM with a cobalt coating, maintaining temperatures between 650 
°C and 850 °C, using methane as the carbon source [34]. P. Bhat and 
colleagues achieved CNT growth on HGM coated with nickel at 600 
°C, utilizing acetylene as the source gas [57]. These NCs, whether 
in their pure form or as NC-coated HGM, can be integrated into the 
matrix through various techniques, such as solvent evaporation or 
melt mixing methods.
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Figure 1: Schematic processing techniques of introducing carbon nanomaterials NC into epoxy polymer composite 
towards synthesis of efficient (NC/HGM/Polymer) composite foam.

Improved Properties of Polymer Composite Foam 
by Introducing NC
Mechanical properties

Enhancements of mechanical properties are very serious 
challenge for syntactic foams as these foams serve as core in 
aerospace and marine structures and failure of which may lead 
to property and life loss. Several research have been reported 
mechanical properties enhancement by matrix modification with 
fillers such as short fibers, micro sized fibers and particulates and 
nano scaled fillers such as nano clay, CNT, graphene and PEEKMOH 
[58]. Stable structural defects in nanostructures add to further 
versatility [59]. Macro fibers show tensile and shear strength 
enhancement at low volume fraction and higher volume of micro 
fiber reinforcement softens the matrix and also possesses poor 
interaction with the matrix and hence brings down the structural 
reliability of syntactic core. Reinforcement of nano clay in syntactic 
foams has been studied and found limited enhancement in tensile 
properties with increase in density significantly [60-65]. It is 

reported in [62,63,66,67] that a density increases of 17-26% has 
occurred in syntactic foams with nano clay inclusion of 2-4 vol% 
and hence limits its application as structural cores. 

A very low volume fraction of graphene platelets has enhanced 
the tensile and fracture properties of syntactic foams [45], as shown 
in Table 1. Capacity to deflect crack propagation, high surface 
area and excellent mechanical properties of graphene platelets 
contribute the mechanical property enhancement of syntactic 
foams [58]. Also GP proves to have stronger interaction with the 
matrix which restricts polymer chain mobility and hence delaying 
crack initiation and growth. GP shows improvement in mechanical 
properties of syntactic foams when added in lower volume 
fraction (<3%) and higher volume fraction of GP shows negative 
performance which is clearly attributed to the dispersion challenge 
of GP when its volume increases. Poor dispersion of GP causes its 
agglomeration, wrapping and entanglement as they are 2D nano 
particles and hence restrict the strain transfer which results in poor 
performance.

Table 1: Effect of NC reinforcement on tensile and compressive properties of HGM/polymer composite foam.

Ref Nano Carbon ρ HGM kg/m3 HGM vol % NC vol%
Tensile 

Strength (% 
var)

Tensile 
Modulus (% 

var)

Compressive 
Strength (% 

var)

Compressive 
Modulus (% 

var)

[45] GP 380 30 0.1 +15.9 +4.57 +3.6 +20

[45] GP 380 30 0.3 +14.7 +14.7 +2.4 +26.6

[45] GP 380 30 0.5 +10.5 +8.6 -11.1 +20

[61] CNF 450 50 0.3 +27 +105 - -

[61] CNF 220 30 0.42 -7.8 -11.0 - -

[61] CNF 220 50 0.3 +29 +9.8 - -

[61] CNF 460 30 0.42 -14.4 -13 - -

[61] CNF 460 50 0.3 +46.6 +12.5 - -
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Syntactic foams show ductility under compression. Macro fiber 
reinforcement decreases the compression strength of syntactic 
foams. [62,63] reported that when 5 vol% of nano clay is added 
to epoxy based syntactic foams compressive strength increases 
with decrease in modulus significantly and with nano clay volume 
fraction less 5% the strength value decreases. Syntactic foams 
when loaded compressively it behaves elastically till the resilience 
level and then failure of microspheres occur corresponding to the 
plateau region in the stress strain curve and finally failure of matrix 
occurs. Syntactic foams are notably brittle when subjected to 
tensile loads. The tensile strength exhibits a decreasing trend with 
the rise in Hollow Glass Microspheres (HGM) volume fraction in 
syntactic foams, and failures occurring under tension are primarily 
influenced by the matrix. Tensile strength displays improvement 
when macro fibers are introduced, especially at volumes below 5%, 
but beyond that, it declines due to matrix softening with micro fiber 
reinforcements [66,67]. Interestingly, the addition of nano clay to 
epoxy-based syntactic foams, as reported in [45], increased tensile 
strength. However, these composites demonstrate poor damage 
tolerance and reduced load-bearing capacity. Furthermore, [45] 
reveals that the inclusion of graphene platelets in syntactic foams 

enhances both tensile modulus and tensile strength, particularly 
when the volume fraction of graphene platelets is at 0.3%, 
resulting in a remarkable 14.7% improvement compared to plain 
syntactic foams. However, when the volume of graphene platelets 
reinforcement exceeds 3%, adverse effects are observed [45]. 
Comparison of the resulting mechanical properties are in Table 1. 

Electrical/dielectric properties
Conductivity of the composites increases with CNF 

reinforcement [68-71]. Electrical impedance increases with HGM 
volume in CNF/syntactic foams, which is because the porosity 
increases in the composites with HGM volume and hence the 
impedance. Denser HGM increases impedance of the composites. 
CNF decreases insulation and hence impedance decreases with 
CNF content in the composites [72]. Dielectric constant remains 
higher at low test frequencies, and it increases with the frequency. 
CNF volume in the syntactic foams increases dielectric constant 
and it reaches maximum at 10 wt% with 1 Hz test frequency. This 
increasing trend is because randomly connected CNF number 
increases with CNF volume in the composites and hence capacitance 
increases resulting higher dielectric constants [72-74]. Comparison 
of the resulting mechanical properties are in Table 2. 

Table 2: Effect of NC reinforcement on electrical and dielectric properties of HGM/polymer composite foam.

Ref NC ρ HGM kg/
m3

HGM vol 
% NC wt%

Resistance Capacitance (Fx10-11) Dielectric Constant

f=1 Hz 
(Ωx108)

f=105 Hz 
(Ωx103) f=1 Hz f=105 Hz f=1 Hz f=105 Hz

[72] CNF - - 1 9.4 2.2 4.2 2.6 19.9 12.4

[72] CNF - - 2 7.3 2.8 50.3 3.1 222 13.8

[72] CNF - - 5 7.7 1.9 5.2 3.1 26.4 15.8

[72] CNF - - 10 7.7 1.6 5.1 3.1 26.6 16.1

[72] CNF 220 15 1 9.8 3.6 2.9 1.8 12.6 7.9

[72] CNF 220 15 2 21.9 3.3 13.6 2.2 62.9 9.8

[72] CNF 220 15 5 7.0 1.5 5.5 3.4 25 15.5

[72] CNF 220 15 1 4.1 2.4 7.8 x103 4.3 3.7x104 19.2

[72] CNF 220 30 1 8.1 2.7 2.1 1.7 9.7 7.7

[72] CNF 220 30 2 8.8 3.1 3 2 14.4 9.5

[72] CNF 220 30 5 7 6.3 40.4 2.5 203.7 12.1

[72] CNF 220 30 1 35.7 4.7 1 0.72 4.6 3.5

[72] CNF 460 15 1 10.9 4.8 8.6 2 40.1 9.2

[72] CNF 460 15 2 7.6 4.9 7.9 2.4 35.6 10.9

[72] CNF 460 15 5 8.1 2.2 5.6 3 24.3 13

[72] CNF 460 15 10 1.9x10-3 7 4x107 8.6 1.6x108 41.1

[72] CNF 460 30 1 23.1 1.5 1.8 1.5 8.3 7.1

[72] CNF 460 30 2 9.6 2.9 3 1.9 13.7 8.4

[72] CNF 460 30 5 4.6 3.6 1.2x103 3.3 5.5x103 14.1

[72] CNF 460 30 1 37.5 3.9 2.8 1.1 13.2 5.4

Conclusion
In the materials industry, the imperative quest for weight 

reduction in designated applications takes center stage. This study 
underscores the remarkable accomplishments of Hollow Glass 

Microspheres (HGM) reinforcement, resulting in significant weight 
reduction and heightened structural rigidity. Furthermore, the 
paper delves into the documented contributions of nanocarbons, 
including graphene platelets, carbon nanotubes, and carbon 
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nanofibers, in augmenting both mechanical and electrical 
characteristics. This concise review also underscores the ease 
with which nanocarbons can customize the electrical attributes 
of polymer composites, a versatile quality sought after in various 
applications. 
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