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Introduction 
Packaging is nowadays one of the main polluting fields, particularly because of plastic 

packaging [1,2]. Plastic world production was 367 million tons in 2020 [3]. It generates a 
massive amount of waste, which is not enough valorized [4]. As the field grows, it is urgent to 
find new packaging solutions that preserve food from spoiling and have a lower environmental 
impact. For those reasons, biopolymers seem promising to replace oil-based polymers 
currently used [5,6]. More precisely, biopolymers such as Polylactic Acid (PLA) [7,8], starch 
[9,10], Polybutylene Succinate (PBS) [11-13], Poly (Butylene Succinate-Co-Butylene Adipate) 
(PBSA) [12,13], and Polybutylene Adipate Terephthalate (PBAT) [14,15] are widely studied 
[16,17]. Those polymers can be transformed by thermomechanical processes (injection, 
extrusion, thermoforming), which is an advantage for industrial production. However, 
biopolymers also have drawbacks. Mechanical, barrier and optical properties can be weak 
for some applications. Design composites can be an interesting way to improve polymer’s 
properties. To produce those structures, reinforcements are dispersed in polymers matrix. 
Cellulose, silica, clay, and alumina are the main studied reinforcements [18]. Nonetheless, 
chitosan has proved that it could be an interesting candidate due to its antimicrobial properties 
[19-23]. This property could increase the shelf life of food products and limit spoilage. Thus, 
this review aims to present the recent advances in biopolymers reinforcement with chitosan. 

Chitosan
Chitosan is a polysaccharide derived from chitin by deacetylation (Figure 1); [24,25]. Chitin 

is extracted from shellfish skeletons and exoskeletons, mainly from crustacean shells. Seafood 
industry generates 80.000 tons of waste per year [26]. Consequently, it could be interesting 
to recover this material. Chitosan is biodegradable, biocompatible, non-toxic, antimicrobial. 
It is also chemically modifiable, which allows to adapt the properties [21,23]. It is insoluble 
in water but soluble in acidic conditions. Chitosan is usually defined by its molecular weight 
and its Deacetylation Degree (DD). Chitosan cannot be transformed by common plastics 
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Abstract
It is nowadays urgent to find new packaging solutions that have a lower impact on the environment. 
Biopolymers (PLA, starch, PBAT) seem interesting to the design of the new packaging generation. These 
polymers have some drawbacks such as mechanical and barrier properties. Also, it could be interesting 
to add antimicrobial properties to packaging to increase the shelf life of food products. For those reasons, 
chitosan seems to be an interesting component to add to a biopolymer matrix. Chitosan is a polysaccharide 
derived from crustacean shells. Chitosan can be directly added to the matrix via thermomechanical 
processes, or it can be turned into thermoplastic chitosan with the combined effect of an acid solution, 
a plasticizer, heat, and shear. The chitosan intramolecular bonds are thus reduced. The second method 
seems to limit the agglomeration of chitosan in the polymer matrix and increase interfacial adhesion. The 
composite properties depend on the acid and plasticizer type and rate.
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processes (injection, extrusion, thermoforming) because it is not 
thermoplastic. The degradation temperature is lower than the melt 
temperature. This is due to strong intermolecular bonds that prevent 
the melting, flow, and deformation [27]. Nonetheless, chitosan can 
be added to polymers as reinforcement by thermomechanical 
processes.

Figure 1: Chitin deacetylation reaction [24,25].

Raw Chitosan as Reinforcement for Biopolymer
Reinforcement of thermoplastic polymers by chitosan was 

studied by directly adding chitosan without any treatment. 
Correlo et al. mixed biopolyesters (PLA, PBS, PBSAT, PBSA, 
Polycaprolactone (PCL)) with chitosan (25 à 70 %wt.) via twin-
screw extrusion and injection [28]. Clusters of chitosan are 
observed in samples (100-300µmx15-30µm). Chitosan clusters are 
larger than the initial size of chitosan, which suggests the chitosan 
agglomeration. Tensile strength reduction was observed and 
depend on the polymer considered: a diminution of 34 % and 11 
% for 50 %wt. of chitosan in PBSA composite and PBAT composite 
was obtained, respectively. Those results suggest a weak interfacial 
adhesion. Bonilla et al. obtained similar results by studying PLA/
chitosan (Mw=161kDa; DD=77 %) composites made by twin-screw 
extrusion and cast extrusion [29]. Chitosan seems well dispersed 
but obtained films present irregularities and rugosity because of 
chitosan particles. Matrix and polymer seem immiscible and non-

compatible. However, antimicrobial properties were observed for 
chitosan-based films and allow a reduction of bacterial growth on 
pork meat. Díez-Pascual et al. have also studied composites with 
chitosan. Nanofibers were produced by electrospinning and were 
mixed with PBAT via solvent casting method [30]. Composites were 
considered efficient from 5 %wt. of chitosan against 4 pathogens 
(Staphylococcus aureus, Bacillus subtilis, Salmonella enteritidis and 
Escherichia coli). Other studies have demonstrated the antimicrobial 
properties of chitosan-based composites (PLA/starch/chitosan, 
PLA/chitosan, PCL/chitosan) [31-33]. 

Thermoplastic Chitosan Blend
Chitosan-based composites can present agglomeration and 

compatibilization issues. Produced Thermoplastic Chitosan (TPC) 
can be a good method to avoid those problems. Chitosan can be 
converted into TPC by the combined effect of heat, shear, and the 
presence of a plasticizer. This method is widely studied in starch’s 
case (production of Thermoplastic Starch (TPS)) [9,10,34]. Small 
molecules are located between polymer chains by means of the 
thermomechanical process (generally twin-screw extrusion or 
internal mixer). Intermolecular bonds are reduced, and chains 
mobility is increased [27,35]. Chitosan can consequently melt. TPC 
production requires two components:

a.	 An acid solution, which allows the protonation of 
chitosan: acetic, hydrochloric, and lactic acid can be used 
[36]. Hydrochloric acid is a strong acid that is efficient but can 
degrade chitosan at a high rate. Acetic acid is a weak acid. Its 
action of protonation is less efficient than hydrochloric acid, but 
it cannot degrade chitosan [36-38]. The protonation reaction 
by lactic acid is presented in Figure 2. The sterically hindered 
caused by the acid leads to an increase in the space between 
molecular chains [36-38]. 

Figure 2: Chitosan protonation reaction by lactic acid [36-38].

b.	 A plasticizer, which increases the space between 
chitosan chains. It strengthens the acid role. Propylene glycol, 
polyethylene glycol, and polyols (glycerol, xylitol, sorbitol) can 
be used [35,38,39]. According to the authors, sorbitol gives 
better thermal and mechanical properties than glycerol and 
xylitol [35]. 

Both acid and plasticizer have an impact on chitosan crystal 
structure [35]. Some studies aim to improve TPS properties by 
adding Thermoplastic Chitosan (TPC). Deng et al. prepared TPC 

via casting method and mixed it with TPS by twin-screw extrusion 
[40]. TPC increases the viscosity of TPS and thus facilitates the 
processing. Hygroscopy and elongation are lower, and Young 
Modulus is higher than neat TPS. Mendes et al. studied the 
same blend and demonstrated that chitosan and starch are well 
dispersed, as there is no chitosan cluster [41]. Young modulus and 
elongation are also improved.

Moreover, some published work deals with oil-based polymer 
and TPS. Matet et al. studied the Polyethylene (PE)/Ethylene-Vinyl 
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Acetate (EVA)/TPC blend, which was produced by extrusion [35]. 
90 % of chitosan areas are smaller than 10µm large, which means 
that the plastification works. The obtained films are yellowish. The 
Young modulus and elongation are reduced. The same authors in 
another study demonstrate that PE/chitosan composites have 
antimicrobial properties [42]. 

Conclusion
Chitosan is a widely studied polysaccharide because it is a 

biobased, biodegradable, non-toxic, and antimicrobial component. 
Chitosan can be added to a polymer matrix by thermomechanical 
processes. Some of those composites have antimicrobial properties, 
which can be interesting to increase the shelf life of food products. 
However, polymer matrix and chitosan are often non-compatible. 
That can lead to a reduction of polymers properties, such as 
mechanical properties. Recently, TPC production methods have 
been studied. TPC was mixed with other polymers to increase 
properties. A reduction of agglomeration was noted. This is 
promising for further designs of the next packaging generation.
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