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Introduction
Much research has been done to reinforce thermoplastic and thermosetting polymers 

with organic and inorganic particles [1-5]. For epoxy resins, it is known that micron-size 
particles are able to enhance mechanical properties [6-8]. However, the addition of micron-
size fillers may not always improve the overall performance of a material, and in particular, 
improvements of some properties may occur to the expense of others properties [6,9]. 
Nano-size fillers have been under development to overcome these disadvantages. Nano clay 
is an inexpensive nanofiller with a great potential for usage in wide variety of applications. 
Numerous papers agree well on stiffening effect of nano clay in polymers [10-13] and many 
studies have been done to estimate increases in modulus of nano clay-filled polymers, nano 
clay/epoxies included [12,14-17]. Some research also has studied strengthening effect of nano 
clay in polymers using prediction models [12,18,19]. Based on the strengthening models, the 
importance of adhesion between nano clay layers has been demonstrated [12]. Furthermore, 
due to the importance of fracture toughness in epoxy resins, several scientific papers have 
focused on the fracture behavior of clay-epoxy nanocomposites [20-23]. According to the 
open existing literature on nano clay/epoxies, the increases in fracture toughness of these 
nano-materials have been attributed to different micro mechanisms such as matrix plastic 
deformation, crack deflection, crack bridging, or microcracking and there is no agreement 
on one active mechanism [22,24-27]. Marouf et al. [7] conclusively reviewed the existing 
literature on toughening effect of nano clay in epoxies and the potential mechanisms involved. 
In complement to the existing literature findings for better understanding of toughening 
mechanisms activated in nano clay/epoxy nanocomposites, the objective of this research 
is to quantify the contribution of possible sources involved in toughness improvement in 
a toughenable epoxy filled with intercalated nano clay using micromechanical models in 
combination with experimental results. 
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Abstract
The novelty of this paper is to quantify the contribution of micro mechanisms caused the changes in 
fracture behavior of a model system epoxy resin by introduction of intercalated nano clay. To achieve this 
aim, a combination of fracture toughness measurements, electron and optical microscopy assessments 
and analytical models have been used. The results obtained indicated that addition of intercalated nano 
clay increased fracture toughness of the epoxy resin, although the increases in toughness were modest. 
Examination of fracture surfaces and subsurface damage revealed the presence of crack deflection, par-
ticle bridging and crack branching/microcracking mechanisms. Analysis of the micromechanical models 
for these toughening mechanisms suggested that crack branching contributes the most to the increase in 
toughness. In addition in the present study, the possible additive effects of crack path deflection, crack 
wake bridging, and crack branching and microcracking have been observed as the sources of modest 
improvements in toughness for these intercalated clay-filled epoxies.
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Experimental

Materials
In this investigation, clay-epoxy nanocomposites were 

synthesized by swelling an organophilic montmorilonite in 
an aromatic epoxy resin and subsequent polymerization. The 
epoxy resin used was a diglycidyl ether of bisphenol A (DGEBA), 
EPON 828, from Hexion Specialty Chemicals (USA). The epoxide 
equivalent weight of the epoxy resin is 184-190gmol-1. The epoxy 
resin was used in combination with a curing agent, piperidine from 
Sigma-Aldrich (USA). The organoclay from Zhejiang Fenghong Clay 
(China) with the trade name of NANOLIN DK1 was used in this 
study while its concentration was varied systematically up to 15 
wt%. 

Nanocomposite preparation
For preparation of nanocomposites, organoclay powder was 

mixed with the appropriate amount of liquid epoxy resin using 
a Heidolph RZR2102 mechanical stirrer for 8h at 80 °C. Then, 5 
parts curing agent per hundred parts resin (phr) was injected 
gently into the liquid suspension and mixed for 15min at the same 
temperature. Vacuum was then applied with stirring continued for 
another 15min to degas the mixture. Next, the mixture was cast into 
a preheated aluminum mold and cured at 120 °C for 16h to produce 
test specimens used to evaluate mechanical properties.

Characterization techniques
The nano-filler dispersion in the epoxy matrix was investigated 

using wide angle X-ray diffraction (WAXD). A Philips PRO Xpert 
with Cu-Kα radiation was used in this experiment. Dispersions of 
organoclay in the epoxy matrix was investigated by a transmission 
electron microscope (TEM). Samples were cut using a Leica Ultra 
cut UCT ultra-microtome with a diamond knife. Thin sections (60-
80nm) were collected on copper grids and examined using a Philips 
CM200, field emission gun (FEG) TEM at an accelerating voltage 
of 200kV in bright field mode. Glass transition temperatures (Tg) 
of cured materials were measured using differential scanning 
calorimetry (DSC) in standard mode, TA Instruments 2920 
Modulated DSC, at a heating rate of 10 °C min-1 in the range of 
25-150 °C. The glass transition temperature was determined on 
the second heating cycle. Fracture toughness measurements were 
conducted on pre-cracked, single edge notched (SEN) specimens 
(72Î12.7∈5.8 mm) in three point bending (3PB) geometry and in 
accordance with the ASTM D5045. Pre-cracking was performed by 
tapping a chilled razor blade into the notch sawed in the specimens. 
These tests were conducted on a Hounsfield H10KS testing frame 
with a cross head speed of 1mm min-1. The fracture toughness 
values represent averages of six tests and were obtained under 
plane strain condition. The following equations (1,2) were used to 
calculate KIC:
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where P is the critical load for crack propagation, S is the span 
length, t is the specimen thickness, w is the specimen width, a is the 
crack length, f(X) is non-dimensional shape factor, and X is the ratio 
of the crack length to the specimen width.

 A Cam Scan MV 2300, scanning electron microscope (SEM) 
was used to examine the fracture surfaces of the materials tested. 
All fracture surfaces were coated by a thin layer of gold prior to 
fractography to protect surfaces from beam damage and charge 
buildup. In order to observe the crack tip damage zone of the 
nanocomposites, the double notched four-point bending (DN-4PB) 
method in conjunction with transmission optical microscopy was 
employed. Specimens, 5.8 millimeter-thick, were used for this study. 
The screw-driven Hounsfield was also used at a crosshead speed of 
1mm min-1 for breaking the samples. Thin specimens taken from 
the mid-plane of samples (plane strain region) were then viewed 
using an Olympus BH transmission-light microscope. Both bright 
field and crossed-polarized light conditions were employed. 

Results and Discussion 

The result of XRD and TEM studies in order to evaluate the 
dispersion state of organoclays in the epoxy matrix are illustrated 
in Figure 1. These studies show swelling of galleries and successful 
penetration of the clay galleries with pre-polymer which suggests 
the intercalation of organoclay in the epoxy matrix. The spacing 
between platelets was increased to about 3.5nm. More details on 
the XRD and TEM examinations are fully presented in part 1 of this 
study [12]. The glass transition temperature of epoxy compounds 
was investigated using DSC. The DSC results reported in Table 1 
indicate that the materials are fully cured and that clay surfactants 
do not interfere with the curing reaction. Also, since Tg is 
substantially unchanged, this proposes that the epoxy is not tightly 
bound to filler [28]. This agrees well with the strengthening results 
reported by the same researchers [12]. In summary, no change in 
the glass transition temperature of the epoxy resin was observed 
as organoclay was added into the resin. (Figure 2) contains a plot of 
the fracture toughness, obtained by SEN-3PB tests, versus nano clay 
content. The KIC values are a function of nano clay loading and are 
modestly higher than that of the neat epoxy (Figure 3). This agrees 
well with the results reported in the literature [7,24,26,27,29-
33]. The fracture toughness of the neat epoxy is 0.8MPam0.5. The 
5 wt.% intercalated nano clay-filled epoxy exhibits the highest 
toughness at 1.19MPam0.5 so a 50% increase is observed. The 
fracture toughness of the nano clay-filled nanocomposite decreases 
slightly at 10 wt%. Poor dispersion of the nano clay particles at 
higher contents of 10 and 15 wt% could be the reason for lower 
fracture toughness compared to that of 5 wt% composite (Figure 
4). Figure 3 illustrates the SEM micrographs taken from the damage 
zone on fracture surfaces of the nanocomposite containing 3 wt% 
organoclay. Compared to the neat epoxy, the fracture surface of the 3 
wt% organoclay-epoxy is much rougher. The fracture surface of the 
neat epoxy is very smooth (not shown) which is typical for brittle 
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polymers and indicates a very low fracture resistance. As seen in 
the micrograph (Figure 3), the damage zone is much rougher than 
two other zones and crack propagated through different planes, 
which suggests crack deflection. Furthermore, there is evidence of 

formation of microcracks in the damage zone. The SEM micrograph 
at higher magnification also indicates pull out or bridging of clay 
stacks. Therefore, nano clay bridging may also contribute to the 
increase in toughness observed.

Figure 1: (a) X-ray patterns of pure organoclay, neat epoxy, and organoclay-filled epoxies. The shift in peak 
position from 4.2° to lower angles indicates increases in d-spacing between clay layers. (b) TEM micrographs of 
the 5 wt% organoclay-filled epoxy.

Figure 2: Fracture toughness (KIC) increases with nanoclay content up to 5 wt% in the epoxy matrix.

Table 1: Glass transition temperature of intercalated clay-filled epoxies measured using DSC.

Organoclay Content (wt%) Tg (°C)

0 87

1.5 88.5

3 88

5 89

10 89

15 88



4

Polymer Sci Peer Rev J       Copyright © BT Marouf

PSPRJ.000513. 1(3).2020

Figure 3: SEM micrographs showing the fracture surfaces of the 3 wt% clay-filled epoxy at two magnifications 
(a,b). The arrow shows the crack growth direction.

Figure 4: TOM micrographs taken near the crack tip in the 3 wt% clay-filled epoxy viewed under bright field: (a) 
lower magnification and (b-e) higher magnifications. Note the presence of crack path deflection in (a, c, and e), 
crack branching in (b), microcracking the tactoids in (c) and crack bridging in (d and e).

In general, transmission optical microscopy studies corroborate 
the SEM results. Figure 4 shows the TOM micrographs taken from 
the mid-plane near the crack tip of the 3 wt% intercalated clay-
filled epoxy taken under bright field conditions. The path of crack 
propagation has been deflected in the nanocomposite (Figure 4a) 
while the crack has propagated in straight trajectory in the neat 
epoxy (not shown). In addition to crack wake deflections, the crack 

tip has branched out, and microcracking within the tactoids is 
found (Figures 4b & Figure 4c). It may be argued that microcracking 
the tactoids is an artifact formed during petrographic polishing, 
however, no sign of microcracks in clay tactoids is seen away from 
the crack tip. The TOM micrograph of nanoclay-filled epoxy clearly 
shows the breakage of organoclay tactoids (Figure 4d) and signs 
of bridging on the crack wake (Figure 4e). In summary, both SEM 
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and TOM, show that the improvement in toughness can be due 
to crack path deflection, second phase bridging, crack branching, 
and microcracking, which are well-known shielding mechanisms. 
In following paragraphs, an attempt is made to quantify the 
contribution of each of these mechanisms to the overall fracture 
toughness of these intercalated clay-filled epoxies. Several models 
have been developed to estimate the effect of crack path deflection 
on the overall fracture toughness [34,35]. Faber & Evans [35] 
proposed the following model to quantify the effect of crack path 
deflection as a source of improvement in fracture toughness as a 
function of Young’s moduli ratio, volume fraction and aspect ratio 
of disk shape filler. 

                     0.5
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where Kc and Km are the fracture toughness of the filled 
material and the unfilled/neat material, respectively. Ec and Em 
are the Young’s moduli of the filled material and the unfilled/neat 
material, respectively and φf is the volume fraction of filler. r and t 
are radius and thickness of the disk shape filler. Please note that the 
aspect ratio of disk shape particle is equal to 2r/t.

Table 2: Fracture toughness prediction by deflection 
model proposed by Faber & Evans [35].

Organoclay 
Content

EC/Em

KC/Km

Experi-
mental Prediction

wt% vol% - - Aspect 
Ratio = 2.5

Aspect 
Ratio = 5

Aspect 
Ratio = 10

0 0 1 1 1 1 1

1.5 0.8 1.07 1.25 1.04 1.04 1.05

3 1.7 1.14 1.38 1.07 1.08 1.09

5 2.8 1.31 1.5 1.16 1.17 1.19

10 5.6 1.17 1.38 1.1 1.12 1.16

Aspect ratio = 2r/t.

Given that the ratio of Young’s moduli from the experimental 
results and that the volume fraction of organoclay used and the 
aspect ratio of 2.5 (Table 2), it predicts only a 7% improvement 
in fracture toughness when this mechanism is operating in these 
organoclay-filled epoxies, while based on the experimental results, 
a 37% increase in fracture toughness was measured when 5 wt% 
(2.8 vol%) organoclay was added into the epoxy resin. For the 5 wt% 
organoclay-epoxy system, the model proposed by Faber & Evans 
[35] estimates only about 15% increase in toughness compared to 
a 50% improvement in the experimental result. In addition, as seen, 
the toughening effect is not a strong function of the aspect ratio of 
filler at the applied range. Comparing the predicted values and 
experimental results (Figure 2) reveals that although crack path 
deflection contributes to the overall toughening effect in intercalated 
clay-epoxies, but this cannot be the major source of toughening 

in these materials and other mechanisms should contribute to 
achieve a modest improvement in crack propagation resistance of 
organoclay-filled epoxies. Please note that morphological aspects 
such as particle size and aspect ratio are considered in the crack 
path deflection model proposed by Faber & Evans [35], although 
this model does not take account for the effect of agglomeration. 
Another possible toughening mechanism is crack branching 
and microcracking. Several types of microcracking mechanisms 
have been identified including particulate, matrix, and interfacial 
microcracks. (Figure 5) schematically illustrates three types of 
microcracks. Note that crack branching is a form of microcracking 
as well. In addition, several micro mechanisms models have been 
developed to estimate the contribution of microcracking to the 
overall toughness [36-40]. The following equation was developed 
by Gao & Wang [37] to estimate the toughening effect of crack 
branching and microcracking in ceramic materials, since in addition 
to microcracking; the main crack often exhibits branching: 
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Figure 5: Schematics of three types of microcracks: 
(a) particulate, (b) matrix, and (c) interfacial [41].

where Kc is the fracture toughness of a material containing 
microcracks, Km is the fracture toughness of a material without 
microcracks, β is the angle of the branched crack, 2a is the 
length of microcracks, ρ is the density of microcracks (number of 
microcracks per unit volume) and p is the width of the process 
zone. The schematic diagrams of microcracking model proposed by 
Gao & Wang [37] is seen in Figure 6.
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Figure 6: Schematic diagrams of microcracking model proposed by Gao & Wang [37]: (a) the model of the 
branched crack and (b) main crack tip showing “dissipation zone” and process zone.

This model predicts a logarithmic increase in fracture toughness 
by increasing the branching angle and a linear relationship between 
fracture toughness of the modified material and the density of the 
microcracks. Even though the model proposed by Gao & Wang [37] 
was developed from limited experimental results on a ceramic 

material, quantitatively this model gave a reasonable toughening 
prediction for a thermoplastic-modified epoxy [41]. Although it is 
difficult to precisely quantify the contribution of branching and 
microcracking to overall toughness, Gao & Wang’s model [37] can 
assist in obtaining a rough approximation. 

Figure 7: Fracture toughness increases in a linear fashion with increasing microcrack density based on the 
branching and microcracking model proposed by Gao & Wang [37] (p/a=0.25).

Replacing the Gao and Wang’s model [37] the fracture 
toughness of the 3 wt% nanoclay-filled epoxy (KIC=1.1MPam0.5) 
and the neat epoxy (KIC=0.8MPam0.5) and, back calculating 
predicts a 116° angle (β/2=58°) as the angle of the branched 
crack if the density of the microcracks is assumed equal to zero. 
The angle of branched crack was measured about 92° (β/2=46°) 
for the 3 wt% intercalated clay-epoxy system from (Figure 4b). 
Assuming no secondary microcracking and substituting the angle 
of branched crack equal to 92° (β/2=46°) in the model proposed by 

Gao & Wang [37] estimates a 20% increase in fracture toughness 
compared to a 37% increase observed in the experiment. This 
difference suggests that for the 3 wt% intercalated clay-epoxy, 
a part of the improvements in toughness can be due to the crack 
branching, which acts as a shielding micro mechanism and possibly 
further increases the toughness by microcracking since there is 
the evidence of secondary microcracking in the TOM micrograph 
(Figure 4c). (Figure 7) depicts linear increases in the overall fracture 
toughness as a function of microcracks density. Microcracking has 
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been observed as a major toughening mechanism in hollow glass 
spheres-filled and thermoplastic-modified epoxies [41,42] under 
both static and cyclic loading conditions. More data points are 
needed to investigate the toughening contribution of branching 
and microcracking in a systematic approach as a function of filler 
content. The present study cannot definitely answer whether the 
branching angle is a function of the filler concentration and if the 
branching and microcracking can be a major source of energy 
dissipation in a range of formulations. Based on the experimental 
results and available micromechanical models, it might be 
concluded that at lower contents of organoclay, crack branching 
and microcracking are the major sources of toughening rather than 
crack path deflection, while crack path deflection is dominant at 
higher contents of filler due to morphology aspects. In addition, 
the present study proposes the possible additive effects of crack 
path deflection, crack wake bridging, and crack branching and 
microcracking as the source of modest improvements in toughness 
for intercalated clay-filled epoxies. The supplemental studies need 
to clarify these aspects. 

Summary and Conclusions
The results of this work may be summarized as follows: Both 

TEM and XRD revealed that the organoclay was intercalated 
and that the spacing between platelets was about 3.5nm. The 
incorporation of intercalated organoclay did not change the 
glass transition temperature of the epoxy resin. Therefore, the 
incorporation of nanoclay into a ductile epoxy resin does not 
interfere with the cure reaction and the surfactant does not 
significantly plasticize the epoxy used in this study. The fracture 
toughness is increased with incorporation of intercalated nanoclay. 
The nanocomposite containing 5 wt% nanoclay exhibited the 
highest toughness; however, a 50% increase in fracture toughness 
is modest when compared to other filled epoxies. The modest 
increase in fracture toughness agrees with numerous studies in 
the literature and suggests that these types of fillers are not very 
effective toughening agents. Scanning electron microscopy (SEM) 
and transmission optical microscopy (TOM) revealed that the 
improvements in fracture toughness can be attributed to crack 
deflection, crack branching and microcracking in these intercalated 
clay-filled epoxy nanocomposites. In addition, the predicted 
values using micromechanical models suggested crack branching/
microcracking as the effective toughening mechanism in these 
materials.
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