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Introduction
Metal-Organic Frameworks (MOFs) are crystalline materials with ultrahigh porosity (up 

to 90 % free volume) [1] and large surface areas (in excess of 6000m2/g) [2] which makes 
them a suitable candidate for many applications in catalysis [3] gas sensing [4,5] separation 
and storage [6]. Since the last two decades, the number of synthesised MOFs has dramatically 
increased to ca. 70,000 in the Cambridge Structural Database (CSD) [7]. Computational 
modelling, nowadays, plays an increasingly important role in the pre-synthesis design of 
hypothetical MOFs with targeted properties, resulting in the rational suggestion of an ideal 
candidate(s) for attempted synthesis [8]. 

Density Functional Theory (DFT) Computational modelling, including structure 
optimisations, frequency calculations and optoelectronic properties of MOFs, is dominated 
by Density Functional Theory (DFT) calculations [9]. Thousands of research articles have 
been published to describe the structure-property relationship of both experimental and 
hypothetical MOFs using DFT calculations; a few examples are described in a review by 
Cheetham et al. [10] DFT methods including PBE [11] B3LYP [12] HSE06[13] and many more 
are highly accurate in computing the structures of MOFs with heavy atom root mean square 
deviation (hRMSD) less than 0.05 Å. However, these methods are computationally costly 
for large (containing more than 1000 atoms), periodic MOF systems [13]. For instance, the 
reported CPU time per optimisation cycle is more than 104 seconds for the Rh-MOF (480 
atoms) on an Intel Xeon-E5-266.V4@2.00 GHz CPU [14].

Force Fields (FF) Many interesting periodic MOFs with 2000-5000 atoms in a unit cell 
are not viable for routine DFT optimisations, such investigations are performed by empirical 
Force-Field (FF) models [15]. Force fields variously parameterise bond lengths, angles, torsions 
and non-bonded interactions and are consequently up to five to ten orders of magnitude 
faster than DFT and therefore applicable for larger MOFs (>1000 atoms) [16]. The HRMSD 
of Universal Force Field (UFF) is greater than 2.00Å for the common MOF-5, as compared 
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Abstract
The computational performance of GFN-xTB, including CPU time for calculations, accuracy, number of 
atoms and heavy atom root mean square deviation for the structural determination of Metal-Organic 
Frameworks (MOFs), is compared with DFT and Force Field methods based on the existing literature. 
Herein, it is highlighted that the computational time of GFN-xTB is less than 102 seconds for a large MOF 
containing 5000 atoms in a unit cell and the resultant optimized structure is highly accurate with less 
than 0.05 Å deviation in structural optimization. Moreover, the photovoltaic properties from GFN-xTB are 
in satisfactory agreement with DFT and experimental results. The overall performance of GFN-xTB with 
respect to computational costs and accuracy is far better than DFT and Force Field methods, respectively.
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to only 0.04Å for the computationally efficient DFT method B97-3c 
[14]. Initially, this poor and unpredictable accuracy was a serious 
drawback of FF methods; however, several parameterizations 
of different Force Fields have variously overcome this limitation 
[17,18]. Unfortunately, the need for specific parametrizations 
restricts the applicability of force fields to MOFs where sufficient 
experimental data is available-most general force fields i.e., AMBER 
[19] CHARMM [20] UFF [21] MM1 and MM2 [22] are only suitable 
for specific combinations of (mostly organic) atoms, which limits 
their usefulness given the wide variety of metal nodes in MOFs. A 
further limitation on the use of FF methods is the limited range of 
properties available-while the structure and mechanical properties 
[23] are readily accessible, electronic properties are not.

Density Functional Tight Binding (DFTB) The high 
computational cost of DFT, inaccuracy and limited parameterization 
of FF limit their usage in MOF research. Thus, an intermediate 
approach, with accuracy and computational cost between DFT and 
FF, respectively, is highly desirable. This situation sparks renewed 
interest in semiempirical methods such as Density Functional 
Tight-Binding (DFTB), which combines the accuracy of Kohn-Sham 
DFT and the efficiency of minimal atomic orbital basis sets [24]. 
DFTB is parametrized with precomputed interactions of element 
pairs, thus it is ca. 2 orders of magnitude faster than conventional 
DFT [25]. However, similarly to force fields, the lack of availability 
of parameters, especially for transition metals, where parameters 
are required for both element pairs and the description of spin-
polarisation [26] has limited their applicability to MOFs [27]. To 
overcome the problem of the non-generality of DFTB, extended 
tight-binding (xTB) methods have been developed.

GFN-xTB is a computationally robust extended DFTB method 
developed in 2017 [27] to yield desired geometric, noncovalent 

interactions with Grimme dispersion (D3) correction and vibrational 
frequency with ultra-high accuracy, where x stands for the extended 
atom-centred minimal basis set, augmented with s-function and a 
d-polarization function, which enable it to describe hydrogen and 
hyper-valent bonding, respectively. The parametrization of GFN-
xTB covers s/p/d-block elements up to atomic number 86, which 
makes it applicable to a wide range of metallic elements, including 
some lanthanide and actinide elements [28].

Recent Literature Grimme and co-workers attempted to explore 
the accuracy of GFN methods in mapping transition metal [14,29] 
and lanthanide [30] containing MOF structures by comparing the 
results with high DFT level (PBE0-D4/def2-TZVP) and FF methods. 
The GFNn-xTB methods not only performed well (with HRMSD less 
than 0.5 Å) for full geometry optimisation of medium (309 atoms) 
to large (2784 atoms) non-periodic MOF units but also 6-8 times 
faster (CPU time per optimisation cycle less than 102s) than high-
level DFT optimisations. The comparative performance of GFN-
xTB with DFT and FF in terms of computational or CPU-time (s), 
percentage accuracy, number of atoms and heavy atoms root mean 
square deviation is graphically represented in Figure 1. GFN-xTB has 
great potential to rationalize the structure-property relationships 
of porous materials, including MOFs, COFs, ZIFs and PPNs. The xTB 
program, as implemented by the Grimme group [https://github.
com/grimme-lab/xtb/], has recently been extended to include 
periodic optimisation. Direct calculation of periodic systems is also 
available via the GFN1-xTB method implemented in Amsterdam 
Density Functional (AMS) software developed by Software for 
Chemistry and Materials (SCM) [31] and the implementation in 
DFTB+ [32]. Recently, the efficiency of the GFN2-xTB method in 
alkali-metal-based batteries has been reported by Eilmes et al. [33] 
and claimed that GFN-xTB is a suitable alternative for studying 
sustainable energy applications.

Figure 1: GFN-xTB performance for geometry optimization of MOFs compared with DFT and FF methods based on 
Ref [14,28,29] where the CPU-time and percentage accuracy are compared between the TPSSh/TZ DFT, GFN1-xTB 

and UFF given in ref [28] while hRMSD values are the average of results presented by Grimme et al. in ref [14].
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Conclusion
The article focuses on the computational performance of GFN-

xTB methods for the structural determination and investigation 
of sustainable energy applications of MOFs. The efficiency of the 
GFN-xTB approach enables calculation of large MOF structures 
containing many thousands of atoms with higher accuracy (90%), 
which is not practicable by DFT and FF methods due to lower 
accuracy and high computational cost, respectively.  
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