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Introduction
Ferromagnetism in 2D materials originates from the alignment of electron spins, resulting 

in a collective magnetic order where neighboring spins are parallel. This alignment can be 
achieved through various mechanisms, such as the presence of localized magnetic moments 
or the exchange interaction between itinerant electrons. The reduced dimensionality and 
unique properties of 2D materials play a crucial role in stabilizing ferromagnetic order at 
relatively high temperatures, which is not typically observed in bulk materials. Ferromagnetic 
2D materials hold significant importance due to their potential applications in spintronic 
devices, magnetic sensors, and data storage [1,2].

Graphene, the first discovery of 2D material, developed in 2004 when Novoselov and Geim 
[3] succeeded in isolating a single layer of carbon atoms arranged in a honeycomb lattice 
with unique and fascinating physical properties. It opened up a new era in materials science 
and led to extensive research into 2D materials. It serves as a building block for constructing 
more complex 2D materials and has found applications in fields ranging from electronics and 
photonics to energy storage and biomedical devices [3].

Ferromagnetism has also been observed in several 2D materials beyond graphene. For 
instance, well know monolayer MoS2, MoSe2, WS2 and so on have exhibited ferromagnetic 
behavior when subjected to certain conditions, such as strain, defects, or doping. Additionally, 
Van Der Waals (vdW) magnets like CrI3 and Fe3GeTe2 have shown robust ferromagnetic 
properties in their 2D form. Moreover, combining different 2D materials in vdW 
heterostructures allows for the engineering of tailored magnetic properties and interlayer 
exchange interactions. The exploration of ferromagnetism in these diverse 2D materials and 
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Abstract
Two-dimensional (2D) materials are appealing for nanoelectronics due to their distinct physical 
characteristics and ultimate thickness dimension. Using these nanomaterials will be advantageous for 
many developing spintronic device designs and provide a more incredible method for controlling spin. 
Spintronics holds promise for the future of information technology, potentially replacing silicon-based 
complementary metal-oxide semiconductors that rely on charge manipulation. Still under investigation 
is the quest for discovering 2D materials with ferromagnetic properties, capable of generating, detecting, 
and controlling spin behavior. So, we are writing this mini-review to provide a concise summary of 
the recent advancements made in the field of ferromagnetism. Here we will summarize to encompass 
various aspects, such as the development of ferromagnetic 2D materials, their ability to produce, detect, 
manipulate spin behavior, and the implications of these findings in broader scientific and technological 
contexts.
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vdW heterostructures presents exciting prospects for advancing 
spintronics, magnetic storage, and other technological applications 
[4-6].

In this mini-review, research into the ferromagnetism in 2D 
materials has taken many directions, particularly in the field of 
spintronics, as shown in Figure 1. This evolution is due to a variety 
of techniques, some of which are purely technical, such as the 
increased use of Magnetic Force Microscopy (MFM), which is used 
to analyze the local magnetic behavior of nanomaterials [7]. This 
system functions in non-contact mode using a ferromagnetic tip as 
a local field sensor. As a result, images of the spatial variation of 

magnetic forces can be viewed on a sample surface, showing both its 
topography and magnetic properties. Moreover, the MFM provides 
the highest resolution and details regarding the magnetization 
process in general [8] and the magnetization reversal [9,10] 
of magnetic materials. Spintronics devices utilize the intrinsic 
spin property of electrons to manipulate and store information, 
enabling faster and more energy-efficient electronic devices. They 
hold promise for next-generation technologies such as magnetic 
memory, spin-based logic devices, and quantum computing. 
Additionally, a lot of research has gone into understanding the 
magnetization response that spintronics devices exhibit [10-14].

Figure 1: Structural properties, characterizations and device applications based on ferromagnetic 2D materials 
[2,10-14].

Central Concept of Ferromagnetic 2D Materials 
and Application

The paramagnetic behavior has been observed in 2D materials 
due to the presence of unpaired electrons and high density of states 
near the Fermi level. Where the favorable electronic structures 
and strong exchange interactions align the neighboring magnetic 
moments, resulting in a net magnetic moment. Kim et al. [15], Kou 
et al. [16], Yazyev and Helm [17] have predicted that magnetism 
(Figure 2) will result from both the edge states that develop around 
zigzag-shaped edges [15,16] and defects that either vacancy or 
hydrogen chemisorption [17,18]. Cervenka et al. [19], Zhou et 
al. [20] have revealed the presence of ferromagnetic localized on 

order at the edges of graphite and n-layer graphene [19,20]. In 
addition, the available literature from Zhou et al. [20] has shown 
that local magnetic moments exist at the edges of n-layer graphene 
and graphite with a Curie temperature above ambient temperature 
[11]. On the other hand, Yazyev et al. [21] have exposed that both 
transverse and longitudinal fluctuations of magnetic moments at 
the zigzag edges of graphene from the first principles have been 
studied as well. It has been found that due to the transverse 
fluctuations resulting from a high spin stiffness constant, the spin 
correlation length at ambient temperature is 1nm. Under the critical 
temperature, the spin correlation length increases significantly, 
while at temperatures exceeding 10K, the spin correlation length 
decreases due to weak magnetic anisotropy [21].
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Figure 2: Structures and Graphs explain ferromagnetism of 2D nanomaterials. (a) Magda et al. [22] show the 
correlation between the electronic and magnetic properties of ZGNs. (b) Zeng [23] and colleagues determined the 

spin-dependent electron transport properties of 8-ZGNR. (c) Yun et al. [24] propose a diagrammatic representation 
of the magnetic moment of the MoS2 monolayer induced by tensile strain. (d) Jiang et al. [25] establish the design of 
the two-probe model apparatus and its Spin-dependent I-V curves. (e) Measurement of nonlocal magnetoresistance 
on a graphene nonlocal spin valve with tunneling contacts done by Han [26] and his colleagues. (f) Sierra et al. [27] 

obtained optical spin injection and spin transport.

Further improvements in ferromagnetism behavior were 
observed when different research groups have conducted density 
functional theory calculations to investigate the strain-induced 
electronic and magnetic properties of single-layer MoS2 with 
vacancy defects [22-27]. It has been observed that the application 
of tensile strain induces ferromagnetic behavior and transforms 
the material into a metallic state [24]. They then used cobalt 
electrodes to demonstrate spin injection into graphene at ambient 

temperature. Where it is also possible to detect spin by contrasting 
the spin-up and spin-down local currents. Nevertheless, both weak 
spin-orbit coupling, and its zero bandgap prevent it from being used 
to create sophisticated spintronic devices like logic gates [28]. Now 
that straightforward experimental methods have been developed 
for coupling graphene with other atomically thin vdW crystals to 
generate heterostructures has made it possible to examine the 
characteristics of vdW heterostructures [29].

Figure 3: MFM and magnetic devices. (a) The topography and phase images of graphene nanosheets captured by 
AFM and MFM, respectively, are represented by Wang [10] and his colleagues. (b) Configurations for nonlocal and 
local spin transport measurement done by Han et al. [26] (c) Zeng et al. [23] proposed a schematic representation 

of bipolar spin diodes based on ZGNR. (d) Wang et al. [30] spin diode diagram. The spin diode comprises a junction 
of graphene that is ferromagnetic, strained, and normal. (e and f) Graph showing the relationship between spin 

polarization and the bias voltage Vb. The effects of the strain caused by the zigzag direction and the effects of the 
strain caused by the armchair’s direction are represented respectively.
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However, there are still numerous unanswered questions, and 
some of them are addressed in this mini-review. It is undoubtable 
that readers will come up with more to be added to the list. However, 
A new class of magnetic devices for magnetic storage, sensing, and 
data processing would be possible if 2D nanostructures could be 
used to effectively and reliably produce nanosized carbon materials 
that are magnetic. Eventually, these concerns are to enhance the 
innovative nature of the experimental study in this field and its 
promising future [30] (Figure 3).

Summary and Challenges
Recent progress in the field of ferromagnetism in 2D materials 

has shown great promise for various applications namely 
spintronics, magnetic memory devices, magnetic sensors, spin 
filters, magnetic heterostructures, and magnetic probes. Here we 
have described some techniques like doping, defect engineering, 
and proximity effects have been employed to induce and manipulate 
ferromagnetism in these materials. However, challenges still 
remain, including understanding spin relaxation in materials like 
graphene, studying magnetic interactions in graphene, addressing 
environmental effects and material degradation in TMDCs, 
overcoming limitations in achieving room temperature spintronic 
applications involving magnetic vdW materials, and developing 
diluted magnetic systems for TMDCs. Overcoming these challenges 
will be crucial to fully harness the potential of 2D ferromagnetic 
materials and realize their practical applications in various fields.
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