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Endometrial cancer is the second most prevalent cancer among women after breast cancer 

with an estimated 65,950 new cases diagnosed in 2022 in the USA alone [1]. To diagnose and 
make a treatment plan for endometrial cancer patients, MRI scans were often employed to 
assess the metastasis, Depth of Myometrial Invasion (DMI), Lymph Vascular Space Invasion 
(LVSI), and cancer risk score with an expert. However, the accuracy of the assessment results 
was highly dependent on the experience and knowledge of the experts, and therefore these 
results were subjective. To overcome this limitation, Machine Learning (ML) methods 
combined with radiomics attract considerable attention for endometrial cancer studies as it 
is automatic and objective for the patient diagnosis. Radiomics, which is an emerging method 
for identifying features from medical images [2-4], have been applied for endometrial cancer 
classification [5,6] and survival analysis studies [7]. The current methods, results, and future 
directions for endometrial cancer studies using ML and MRI radiomics were presented in the 
following.

For endometrial cancer classification studies, DMI, LVSI, and risk score were often adopted 
as response variables in the ML models, while the covariates were clinical variables and/or 
radiomic features. Studies have shown that these response variables can be predicted with 
radiomic features from multisequence MRI including T1-weighted, T2-weighted, and Diffusion 
Weighted Imaging (DWI). Based on the radiomic features obtained from MRI, the accuracy of 
the endometrial cancer response variable classification accuracy is different [8]. For example, 
for the LVSI prediction, the Area under the Receiver Operating Characteristic curve (AUC) of 
0.80 has been achieved [9]. For the DMI classification, the AUC of 0.81 was achieved using 
multisequence MRI [9]. However, there was smaller AUC value for the risk score stratification 
using radiomic features. For instance, a recent study showed that the AUC of 0.72 was obtained 
from the T2-weighted MRI [10] for endometrial cancer patient risk classification. For most 
of the studies, the risk response variable classified the patient groups into two groups only, 
i.e., high and low risk groups. Future studies should investigate classification methods for 4 
risk groups, i.e., low, intermediate, high, and advanced endometrial cancer patient groups [6]. 
For the endometrial cancer histology type classification using radiomic features and clinical 
features, high classification results (AUC=0.90) were achieved [6].

Compared with classification studies, fewer studies focused on using survival analysis 
methods to investigate the survival time of the endometrial cancer patient. Survival analysis 
is a collection of statistical procedures for data analysis where the outcome variable of 
interest is the time until an event such as death or recurrence occurs [11]. For example, the 
5 year overall survival rate ranges from 74% to 91% in endometrial cancer patients without 
metastatic disease [12], but the 5-year overall survival rate for all cancer stage IIIA patients 
was 55% [13]. Estimating survival time is important as it is useful for patient management 
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and making a treatment plan. There are three methods to study 
survival analysis, namely, non-parametric methods such as Kaplan 
Meier (KM) estimate [14], semi-parametric methods such as Cox 
Proportional Hazard (CPH), and parametric methods. KM and CPH 
model methods are the most popular non-parametric and semi-
parametric methods which have been carried out for endometrial 
survival analysis [15]. An integrated model combining clinical and 
radiomic features for the survival analysis has been developed [7]. 
In the analysis, radiomic features were incorporated into the CPH 
model for the survival time estimation. Although a deep learning 
survival analysis method has been developed [16], there is no 
report to use this method with radiomic features for endometrial 
cancer survival studies [17].

In summary, with the development of ML methods and 
radiomics, it is possible to classify endometrial cancer patients with 
a reasonable accuracy (e.g., AUC>0.8) using clinical and radiomic 
features. The majority of current studies adopted a handcrafted 
radiomics method, which requires manual segmentation of the 
tumour mask from medical images, while the deep learning based 
method is fully automatic to classify the patient into different 
groups for treatment [18], which is one of the future directions 
for endometrial cancer classification and survival analysis studies. 
More work needs to be done to further explore these methods and 
to improve the classification and survival time estimation accuracy.
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