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Introduction
The advent of immunotherapy has revolutionized oncology, offering durable responses 

and long-term survival for patients with various malignancies once considered intractable 
[1,2]. Unlike cytotoxic therapies that directly target tumor cells, immunotherapies harness 
the patient’s own immune system to recognize and eliminate cancer, with the potential 
for sustained control even after treatment ends. Approaches such as immune checkpoint 
inhibitors, adoptive cell therapies, and cancer vaccines have delivered outcomes rarely 
achieved with traditional cytotoxic therapies, reshaping the landscape of cancer care and 
accelerating the development of novel immunotherapeutic agents [3,4]. Despite these 
advances, the clinical evaluation of immunotherapy poses unique methodological and 
operational challenges. In contrast to chemotherapy, where Dose-Limiting Toxicities (DLTs) 
are common and serve as a primary guide for dose escalation and selection, immunotherapy 
typically induces Low-Grade Toxicities (LGTs), while DLTs are relatively rare [5]. As a result, 
traditional phase I trial designs that rely solely on DLTs and ignore LGTs may be ill-suited 
for determining appropriate dosing in this context. Moreover, the assumption that both 
efficacy and toxicity increase monotonically with dose, which underlies many traditional 
designs, often does not hold for immunotherapy [6]. Beyond a certain threshold, higher doses 
may not yield additional clinical benefit and may even increase the risk of adverse events. 
Accordingly, dose-finding efforts in immune-oncology increasingly focus on identifying the 
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Abstract

Immunotherapy has transformed cancer treatment, providing durable responses and long-term survival 
benefits across a broad spectrum of malignancies. However, designing clinical trials for immunotherapeutic 
agents presents unique challenges distinct from those encountered with conventional chemotherapy and 
radiotherapy. These include atypical and delayed response patterns, low rates of dose-limiting toxicities, 
immune-related adverse events, and the critical role of immune biomarkers. As a result, traditional trial 
designs and endpoints may fall short in accurately evaluating immunotherapy. In response, a range of 
innovative trial designs have emerged to better capture the complex dynamics of immunotherapeutic 
agents. This review summarizes the evolving landscape of early-phase clinical trial design in immune-
oncology, with a focus on toxicity assessment, endpoint selection, dose optimization, and biomarker 
integration. By addressing key methodological challenges and highlighting recent advances, we aim to 
guide researchers, clinicians, and trialists in the development of more efficient and informative trials that 
accelerate the safe and effective translation of immunotherapies into clinical practice. We conclude by 
discussing current limitations and outlining future directions for advancing immunotherapy trial design.
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Optimal Biological Dose (OBD), the dose that achieves a favourable 
balance between clinical efficacy and safety, rather than simply the 
Maximum Tolerated Dose (MTD).

Adding to the complexity, immunotherapy often produces 
delayed and heterogeneous treatment effects. This heterogeneity 
is influenced by differences in tumor biology, immune 
microenvironment, and biomarker status (e.g., PD-L1 expression, 
tumor mutational burden, or other predictive signatures), which 
can markedly affect both efficacy and toxicity outcomes. Failure 
to account for such variability may obscure meaningful treatment 
effects in biomarker-defined subgroups and complicate dose 
selection. Unlike chemotherapeutics that typically produce rapid 
tumor shrinkage, immunotherapies often work by delaying disease 
progression and extending survival. Some patients may achieve 
long-term durable responses even in the absence of an immediate 
reduction in tumor burden [7,8]. As such, traditional endpoints like 
Objective Response Rate (ORR) may be insufficient for early-phase 
evaluation, and alternative endpoints, such as Progression-Free 
Survival (PFS) or immune-related response criteria, may offer a 
more accurate assessment of clinical benefit [9,10].

A further defining feature of immunotherapy is its ability to 
elicit specific immune responses that reflect the biological activity 
of the agent. Immune responses such as CD8+ and CD4+ T-cell 
proliferation or cytokine production can be measured early in 
treatment and are often predictive of downstream clinical outcomes 
[11-13]. In addition to these established correlates, emerging 
biomarkers may also provide valuable information for guiding safe 
and effective translation into clinical practice. For example, Sirtuin 
1 (SIRT1) has been implicated in immune regulation, inflammation, 
and cell survival, with potential relevance to autoimmune and 
inflammatory disorders. Early evaluation of plasma SIRT1 levels 
may help anticipate treatment-related toxicities and adverse 
immune reactions, given its role in pathways associated with 
programmed cell death [14-16]. Incorporating both established 
immune responses and biomarkers into dose-finding strategies 
could enhance the precision of dose selection and support the 
development of more effective regimens.

Taken together, these unique characteristics challenge the 
applicability of traditional trial designs and endpoints, highlighting 
the need for innovative approaches tailored to the distinct 
properties of immunotherapy. In response, a variety of novel 
designs have been developed, emphasizing adaptive, flexible, and 
biomarker-driven strategies that can more effectively capture the 
complex therapeutic dynamics of immunotherapeutic agents. This 
review provides an overview of the evolving landscape of clinical 
trial designs in immune-oncology, with a primary focus on early-
phase and exploratory designs where methodological innovation is 
most urgently needed. We examine phase I designs focused solely 
on toxicity, phase II designs centered on efficacy, phase I/II designs 
that jointly evaluate both toxicity and efficacy, designs spanning 
multiple indications, and marker-strategy designs for evaluating 
predictive biomarkers. By synthesizing recent methodological 
advances and identifying persistent gaps, this review aims to 

inform future directions in the design and implementation of 
immunotherapy trials.

A Phase I Trial Design for Immunotherapies
Traditional phase I trial designs that rely solely on DLTs are 

often inadequate for immunotherapies, which frequently induce 
LGTs and rarely result in DLTs. To address this limitation, Jiang et al. 
[17] proposed the MC-Keyboard design, which incorporates both 
DLT and LGT information through multiple toxicity constraints 
to guide dose escalation, de-escalation, and MTD determination. 
Extending the original Keyboard design by Yan, Mandrekar, and 
Yuan [18], which was based solely on DLTs, the MC-Keyboard 
design framework integrates LGTs into its decision-making process 
to provide a more comprehensive safety assessment. At the end of 
the trial, the MTD is defined as the lower of two candidate doses: 
One with a DLT rate estimate closest to the prespecified target DLT 
rate, and the other with an LGT rate estimate closest to the target 
LGT rate. This conservative approach ensures that both severe 
and moderate toxicities are considered in dose selection, which is 
especially important for immunotherapies where LGTs may have 
clinical significance. As a model-assisted design, MC-Keyboard 
retains the simplicity and transparency of algorithm-based methods 
while incorporating the flexibility and superior performance of 
model-based inference. A key practical advantage is that it provides 
pretabulated, rule-based decision tables that can be fully specified 
before the trial begins. These tables link observed toxicity outcomes 
to dose escalation or de-escalation decisions, eliminating the need 
for complex real-time modeling during the trial and facilitating 
regulatory review, protocol writing, and on-site implementation. 
One limitation of phase I trial designs for immunotherapy is that 
they do not incorporate efficacy or immune response data, which 
are often critical for identifying the OBD in immunotherapy. As a 
result, the selected MTD may not reflect the most therapeutically 
beneficial dose, especially in cases where efficacy does not increase 
monotonically with dose.

Phase II Trial Designs for Immunotherapies
Conventional phase II trial designs that rely on a single, rapidly 

ascertainable binary endpoint, such as OR, are often inadequate for 
immunotherapy, where treatment responses are typically delayed 
and multiple endpoints may be clinically justified. To address these 
challenges, Lin, Coleman, and Yuan [19] proposed the Time-to-Event 
Bayesian Optimal Phase II (TOP) design, which accommodates both 
simple and complex endpoints within a unified, flexible framework. 
The TOP design enables real-time “go/no-go” interim decisions 
by incorporating all available patient data, including partial and 
pending outcomes due to late-onset responses. It is statistically 
efficient, maximizing power to detect truly effective treatments 
while maintaining strict control of the type I error rate. The 
authors illustrate the versatility of the TOP design through three 
immunotherapy trial examples: (1) delayed binary response (e.g., 
OR), (2) co-primary efficacy endpoints (e.g., OR and PFS), and 
(3) joint modeling of efficacy and toxicity endpoints. Simulation 
studies demonstrate that, compared to other Bayesian designs, the 
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TOP design can shorten trial duration by 4-10 months and increase 
power to detect effective treatments to as high as 90%. 

Incorporating immune response into phase II evaluation is 
also critical in immune-oncology, where early immune responses 
may predict long-term benefit. The BLITE design [20] introduces 
a Bayesian phase II framework that jointly models longitudinal 
immune response and time-to-event efficacy outcomes. Recognizing 
that a subset of patients may achieve durable benefit, the design 
incorporates a cure fraction into its modeling. Longitudinal 
immune responses are captured via hierarchical nonlinear mixed-
effects models, with separate trajectory specifications for the 
cured and susceptible patients. For patients in the susceptible 
group, time-to-event efficacy outcomes are modelled conditional 
on the immune response trajectory via a time-dependent Cox-
type regression model [21]. Treatment desirability is quantified 
through a physician-elicited utility function that integrates both 
immune response and clinical outcomes. A two-stage adaptive 
design is used to guide treatment allocation and decision-making. 
Simulation studies demonstrate that BLITE achieves favorable 
operating characteristics and outperforms alternative designs that 
do not incorporate immune response information, particularly in 
identifying effective treatments with durable benefit. 

Despite important advances, these phase II designs for 
immunotherapy face several limitations. They prioritize the 
detection of efficacy signals but often overlook the trade-off 
between efficacy and toxicity, which is crucial for identifying the 
OBD rather than merely demonstrating activity. As a result, they 
may promote doses that are effective in the short term but poorly 
tolerated or inadequate for achieving sustained clinical benefit. 
Moreover, they typically fail to account for patient heterogeneity 
by biomarker status, potentially obscuring meaningful treatment 
effects within specific subgroups.

Phase I/II Trial Designs for Immunotherapy
Unlike phase I designs that focus exclusively on toxicity and 

phase II designs that primarily assess efficacy, phase I/II designs 
simultaneously evaluate both outcomes to better inform dose 
selection. The BOIN12 design [22] is a phase I/II approach 
developed to identify the OBD by maximizing the risk-benefit trade-
off. This design employs a utility-based framework, where utility 
scores quantify the clinical desirability of each possible toxicity-
efficacy outcome. In the simplest case with binary toxicity and 
efficacy endpoints, there are four possible outcomes: no toxicity 
and efficacy; no toxicity and no efficacy; toxicity and efficacy; 
and toxicity and no efficacy. A utility score of 100 is assigned 
to the most desirable outcome (no toxicity and efficacy) and 0 
to the least desirable outcome (toxicity and no efficacy). These 
two anchor points guide the elicitation of utility scores for the 
remaining intermediate outcomes. Based on these scores and the 
estimated probabilities of each outcome, the mean utility of each 
dose is calculated. The OBD is then defined as the dose with the 
highest mean utility, provided it also meets acceptable toxicity 
and efficacy criteria. During the trial, BOIN12 adaptively assigns 
patients to the dose with the most favorable utility-to-risk profile. 
Like the MC-Keyboard design, the decision rules for dose escalation 

and de-escalation in BOIN12 are pre-specified and can be fully 
incorporated into the trial protocol. 

The TSNP design [23] is a two-stage nonparametric phase I/
II design to identify the OBD for immunotherapy. This design 
addresses two major limitations that have hindered the practical 
use of many existing designs. First, most existing designs rely on 
complex Bayesian modeling frameworks, which are often viewed as 
nontrans-parent or difficult to interpret by the clinical community. 
Second, many of these designs are based on parametric models that 
require strong assumptions about the dose-response relationship 
and the joint distribution of toxicity and efficacy. In the context of 
early-phase trials, where sample sizes are typically small, these 
assumptions are difficult to validate and may lead to unreliable 
results. The TSNP design overcomes these challenges by adopting 
a fully nonparametric strategy, providing closed-form estimates of 
joint toxicity-efficacy probabilities and a simple, transparent dose-
finding algorithm. User-friendly software is available to facilitate 
simulations and real-time implementation.

The SCI design [24] is tailored for immunotherapy trials that 
jointly considers DLT and PFS. It aims to address two key challenges 
in such trials. First, disease progression often leads to treatment 
discontinuation, precluding further toxicity observation, a semi-
competing risks scenario where progression precludes toxicity 
but not vice versa. Second, PFS is typically a late-onset outcome 
requiring long follow-up. The SCI design tackles these complexities 
by factorizing the joint toxicity-efficacy probability into marginal 
and conditional components and re-constructing the likelihood 
function based on each patient’s actual follow-up time. A curve-free 
dose-finding algorithm is then applied to identify the OBD using a 
toxicity-efficacy trade-off function, without relying on parametric 
dose-response relationships. 

To leverage immune response data, several phase I/II designs 
have been developed to determine the OBD by jointly accounting 
for immune response, toxicity, and efficacy. Liu & Yuan [25] 
employed an Emax model to characterize the marginal distribution 
of the immune response, and, conditional on this response, used 
a latent variable approach to jointly model binary toxicity and 
ordinal efficacy. The model incorporates a mechanistic assumption 
that severe immune-related toxicities occur only when the immune 
response exceeds a predefined threshold. The OBD is defined as 
the dose that maximizes a desirability function reflecting the risk-
benefit trade-off. Building on this framework, the SPIRIT design 
[26] extends the framework to accommodate PFS as the efficacy 
endpoint. In SPIRIT, the OBD is defined based on the restricted mean 
survival time, with PFS serving as the primary endpoint for dose 
selection and the immune response used as an auxiliary marker 
to rapidly eliminate ineffective doses. Toxicity is continuously 
monitored throughout the trial to ensure patient safety.

A common limitation of the aforementioned designs is the 
assumption of a homogeneous patient population, following a “one-
dose-fits-all” approach to dose assignment and OBD selection. This 
assumption is often unrealistic, as patient heterogeneity is common 
in clinical settings. For example, numerous studies have shown 
that PD-L1 expression is a predictive biomarker for response to 
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checkpoint inhibitor-based immunotherapy. Patients with PD-
L1-positive tumors tend to experience higher response rates and 
improved progression-free and overall survival compared to PD-
L1-negative patients [27-32]. To address this, Guo & Zang [33,34] 
developed phase I/II designs to identify subgroup-specific OBDs. 
These models are deliberately parsimonious yet sufficiently flexible 
to support information borrowing across both outcomes and patient 
subgroups, an important consideration given the limited sample 
sizes typical of early-phase trials. More recently, Guo et al. [35] and 
Lin et al. [36] extended these designs to evaluate immunotherapy in 
combination with radiotherapy. 

Despite their advantages, most current phase I/II designs for 
immunotherapy rely on simplified assumptions about the joint 
distribution of toxicity and efficacy or adopt fixed utility structures 
that may not generalize across different therapeutic contexts 
or patient populations. The elicitation of utility scores, while 
conceptually appealing, can be subjective and may not fully capture 
the nuances of clinical judgment.

Designs for Immunotherapy Trials with Multiple 
Indications

Traditional clinical trials are typically designed to assess the 
safety and efficacy of an investigational drug within a single disease 
indication. In contrast, some immunotherapy trials now enrol 
patients across multiple indications simultaneously, reflecting a 
shift toward biomarker-driven, tissue-agnostic approaches. For 
instance, pembrolizumab, an anti-PD-1 therapy, has been approved 
by the U.S. Food and Drug Administration (FDA) for the treatment of 
unresectable or metastatic solid tumors that exhibit DNA mismatch 
repair deficiency or microsatellite instability-high, regardless of 
tumor origin. Similarly, larotrectinib received FDA approval for 
the treatment of patients with NTRK gene fusion-positive cancers, 
spanning a wide range of tumor types (Drilon et al., 2018). 

The “shotgun” design [37] offers an efficient framework for 
such multi-indication trials. It begins with an all-comer dose-
finding phase to identify the MTD or recommended phase II dose, 
followed seamlessly by indication-specific cohort expansions. 
Patients enrolled in the dose-finding phase are rolled over into 
the appropriate expansion cohorts, enhancing efficiency by 
contributing both safety and preliminary efficacy data. Meanwhile, 
patients enrolled into the cohort expansions continue to inform 
the evolving safety and tolerability profile. Interim analyses are 
conducted within each cohort to allow for early termination of 
indications with insufficient efficacy or unacceptable toxicity. To 
improve the efficiency and robustness of these interim decisions, a 
clustered Bayesian hierarchical model is used to adaptively borrow 
information across indications while preserving the integrity of 
indication-specific evaluations. This is achieved by first clustering 
indications into subgroups, then borrowing information within 
each subgroup to minimize potential bias and control type I error 
inflation.

Building on this framework, the “shotgun-2” design [38] 
introduces a utility-based, two-stage Bayesian basket trial design 
that targets identification of the OBD rather than the MTD. Unlike 

the original shotgun design, shotgun-2 allows for indication-specific 
dose optimization by constructing a utility function that balances 
efficacy and safety, guiding dose-finding and OBD selection within 
each indication. This approach enables more personalized and 
efficient dose selection across heterogeneous disease types, while 
retaining the flexibility to adapt to differing efficacy and toxicity 
profiles across indications. 

While multi-indication trials offer increased efficiency and 
broaden patient access, they introduce statistical and logistical 
complexities. These may include controlling type I error across 
multiple cohorts, ensuring adequate power for each indication, and 
addressing the challenges of rare biomarker-defined subgroups, 
which often have limited sample sizes and high uncertainty.

Marker-Strategy Designs
Immunotherapy often benefits only a subset of patients, 

underscoring the importance of identifying predictive biomarkers, 
biological features that can indicate which individuals are more 
likely to respond to treatment [39,40]. For example, pembrolizumab 
has been approved by the FDA for the treatment of advanced 
melanoma and metastatic squamous and non-squamous non-
small cell lung cancer, but only for patients whose tumors express 
programmed death ligand-1 (PD-L1), that is, PD-L1-positive 
patients. It is important to distinguish predictive biomarkers, 
which indicate treatment response, from prognostic biomarkers, 
which are associated with overall disease outcomes regardless of 
therapy. Only predictive biomarkers can guide treatment selection, 
making their evaluation critical in personalized immunotherapy. 
The Marker-Strategy Design (MSD) is a classical trial framework 
for evaluating and validating predictive biomarkers [41]. In MSD, 
patients are randomized to one of two treatment strategies: A 
marker-based strategy, where treatment assignment depends on 
the patient’s biomarker status (e.g., biomarker-positive patients 
receive the experimental therapy, biomarker-negative patients 
receive the control), or a non-marker-based strategy, where 
treatment is assigned regardless of biomarker status, mimicking 
a standard randomized clinical trial. The effectiveness of the 
marker is typically assessed by comparing clinical outcomes (such 
as response rates or survival) between these two strategies. 
This approach allows investigators to assess whether using the 
biomarker to guide treatment leads to better patient outcomes than 
treating all patients the same way.

However, Zang & Yuan [42] demonstrated that this between-
strategy comparison often suffers from low statistical power to 
detect a true predictive effect and is only valid under the restrictive 
condition that the treatment allocation within the non-marker-
based strategy mirrors the biomarker prevalence in the population. 
To address this limitation, they proposed an alternative wald test 
that is valid under general conditions and achieves greater statistical 
power. They further developed an optimal MSD that selects the best 
randomization ratios between strategies and treatment arms to 
maximize power for detecting a predictive biomarker effect. Han et 
al. [43] further argued that the between-strategy effect estimated 
in MSD does not necessarily reflect the true predictive effect of the 
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biomarker and can be misleading if used for that purpose. To better 
evaluate the predictive utility of a biomarker, they introduced novel 
testing procedures tailored specifically to this goal: One for binary 
response endpoints and another for time-to-event outcomes. 
Simulation studies showed that these tests are both statistically 
valid and substantially more powerful than traditional between-
strategy comparisons. MSDs, especially when paired with improved 
statistical testing procedures, provide a valuable framework 
for evaluating the clinical utility of predictive biomarkers in 
immunotherapy. However, MSDs also present practical and ethical 
challenges. Randomizing patients to the non-marker-based strategy 
may assign some biomarker-positive individuals to treatments that 
are likely to be ineffective, raising ethical concerns, particularly 
when there is already strong preliminary evidence supporting the 
biomarker’s predictive role. In addition, MSDs can be logistically 
complex and require large sample sizes to achieve adequate power, 
especially when the biomarker is rare or when treatment effects 
differ only modestly across biomarker-defined subgroups. As 
such, MSDs are most appropriate in the early stages of biomarker 
validation, before a biomarker is fully established for treatment 
selection.

Conclusion
The rapid evolution of immunotherapy has catalyzed a parallel 

transformation in the design of early-phase oncology trials. Unlike 
conventional cytotoxic agents, immunotherapies exhibit delayed 
and variable responses, immune-related toxicities, and complex 
mechanisms of action, all of which challenge traditional trial designs. 
In response, numerous innovative designs have been proposed to 
better accommodate these unique features. These novel frameworks 
aim to improve the precision, efficiency, and ethical rigor of early-
phase trials by leveraging modern statistical methods and clinical 
insights. This review highlights a range of such designs, including 
those for dose-finding, efficacy evaluation, biomarker validation, 
and multi-indication trials. However, due to space constraints, 
many other promising approaches could not be covered in depth. 
Still, the examples discussed reflect key directions in the evolving 
landscape of immune-oncology trial methodology. Despite recent 
advances, several important limitations and challenges remain. 
First, many novel trial designs are built upon complex Bayesian 
or hierarchical modeling frameworks. While these methods offer 
considerable statistical flexibility, greater efficiency, and the ability 
to incorporate prior knowledge, they are often perceived as opaque 
or nontransparent by clinical investigators and decision-makers. 
This perception can hinder interdisciplinary communication and 
slow clinical adoption. Additionally, regulatory agencies may be 
less familiar or comfortable with these methods, particularly when 
adaptive decisions are driven by partially observed or time-to-
event outcomes.

Second, most existing designs assume a homogeneous 
patient population, relying on a “one-dose-fits-all” strategy. This 
approach neglects substantial inter-patient heterogeneity in 
drug metabolism, immune status, tumor biology, and genetic or 
molecular characteristics, factors that are especially relevant 
in immune-oncology. Such assumptions can lead to suboptimal 

dosing or treatment strategies for certain subgroups. To address 
this, future designs should explore stratified or personalized trial 
frameworks that allow for covariate-adjusted dose finding or 
subgroup-specific efficacy evaluations. Incorporating baseline 
biomarkers, immune profiling, or genomic data could enable more 
individualized treatment approaches, enhancing both efficacy and 
safety. Third, many designs that incorporate immune response 
assume that it is a valid surrogate for long-term clinical benefit, such 
as progression-free or overall survival. However, this assumption 
may not always hold. Immune response can show early activity 
without translating into durable benefit, and some patients with 
minimal initial immune response may later achieve meaningful 
outcomes. Relying too heavily on immune endpoints may thus yield 
misleading conclusions about treatment efficacy. To mitigate this 
risk, validation studies should be conducted to assess the strength 
and consistency of associations between immune responses and 
long-term outcomes. Trial designs can also include both immune 
and clinical endpoints, either as co-primary endpoints or within a 
hierarchical testing framework, to better capture treatment effects.

Fourth, while biomarker-driven dose-finding is a promising 
direction, its application remains limited and faces substantial 
practical hurdles. Biomarkers are often assumed to have strong, 
stable associations with clinical efficacy or toxicity, yet in practice, 
they can be noisy, platform-dependent, and highly context-specific. 
This variability raises concerns about reproducibility and external 
validity, particularly across different cancer types or trial settings. 
Addressing this challenge requires rigorous biomarker validation 
across multiple platforms and independent cohorts. Despite these 
challenges, several promising opportunities exist to enhance the 
design, implementation, and impact of early-phase immunotherapy 
trials. First, there is an increasing demand for transparent, user-
friendly software platforms to support the implementation of 
innovative trial designs. When paired with clear documentation 
and visual aids, these tools can bridge the gap between 
methodological innovation and clinical adoption by making 
advanced statistical methods accessible to investigators without 
extensive programming or modeling expertise. Integration with 
electronic data capture systems and trial management platforms 
could further streamline adoption in real-world trial settings. 
Second, the development of subgroup-specific OBD identification 
strategies represents a critical step toward more personalized 
immunotherapy. While most existing designs rely on a “one-size-
fits-all” approach, emerging methods based on parsimonious 
Bayesian models or covariate-adjusted utility functions offer a way 
to tailor dose recommendations to patient-specific characteristics. 
Incorporating machine learning algorithms or dynamic treatment 
regimens into the dose-finding process may further refine these 
efforts by learning and adapting to individual patient responses 
over time, thereby improving both efficacy and tolerability.

Finally, the integration of Real-World Data (RWD) into 
early-phase immunotherapy trial design presents an emerging 
opportunity to enhance both efficiency and generalizability. RWD 
sources, such as electronic health records, patient registries, and 
claims databases, can be leveraged to inform prior distributions, 
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refine patient eligibility criteria, and validate surrogate endpoints 
in a broader clinical context. When combined with adaptive and 
Bayesian designs, RWD can also help recalibrate interim decision 
rules or provide external control arms, especially in rare or 
heterogeneous indications. While regulatory and methodological 
challenges remain, careful use of RWD has the potential to 
complement traditional trials and accelerate the evaluation of 
promising immunotherapeutic strategies. In conclusion, the 
field of immuno-oncology trial design has made significant 
strides in adapting to the unique properties of immunotherapy. 
However, continued innovation is needed to address limitations 
in model complexity, patient heterogeneity, endpoint selection, 
and biomarker integration. By fostering collaboration between 
statisticians, clinicians, and regulators, future designs can become 
both scientifically rigorous and practically feasible, ultimately 
accelerating the safe and effective translation of immunotherapies 
into clinical care.
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