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Introduction
Electromagnetic waves have been extensively used in medical settings for diagnostic 

purposes, such as for the detection of cancerous tissues, stroke events or cardiovascular 
risk, as the behavior of the waves upon meeting their target gives pertinent information 
for diagnostic and imaging purposes. Consequently, applications related to the response of 
arbitrary shaped scatterers in various media, when stimulated by primary sources, stand 
in the frontline of the current science. Such situations are solved as electromagnetic wave 
scattering problems, of which there are two types. The first one concerns the forward problem, 
aiming to determine the scattered field via the corresponding boundary value problems of 
wave propagation, knowing the physical and the geometrical properties of the scatterer. The 
second one refers to the inverse problem, where we seek information about the nature of 
the scatterer, knowing its effect on the wave field. However, of greater interest is the inverse 
problem [1,2], which becomes particularly difficult if there is no prior knowledge of the 
corresponding forward problem. Hence, towards this direction, we understand the necessity 
to obtain efficient models, using the Maxwell’s fundamental principles of electromagnetism 
[3] and the low-frequency scattering theory [4].

Travelling along the history, we indicatively present several references, taken from the 
already ample literature, which deal with mathematical wave scattering problems, whose 
solution show the complexity of the geometrical configuration [5] and the analytical techniques, 
due to the associated functions [6]. We refer to the study of the low-frequency scattering 
from perfectly conducting Spheres [7], Spheroids [8] and Ellipsoids [9,10], Embedded in a 
conductive environment and based on these analytical outcomes, an important work [11] 
demonstrates the efficiency of the methodology, by providing an effective solution of the 
inverse problem. Within this concept, more complicated geometries for the impenetrable 
scatteres have been investigated, like two almost touching spheres [12] or toroidal-shaped 
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Biomedical engineering is an interesting branch of biosciences, wherein electromagnetic wave scattering, 
and related fields can be applied for medical purposes. This paper investigates the electromagnetic fields, 
being scattered by a metal spherical object in the vacuum environment. A time-harmonic magnetic dipole 
source, far enough, emits at low frequencies the incident field, oriented arbitrarily in the three-dimensional 
space. The aim is to find a detailed solution to the scattering problem at spherical coordinates, useful 
for data inversion. Based on the theory of low frequencies, the Maxwell-type problem is transformed 
into Laplace’s or Poisson’s interconnected equations, accompanied by the prop-er boundary conditions 
on the perfectly conducting sphere and the radiation conditions at infinity, which are solved gradually. 
Approximating the static and the first three dynamic terms is sufficient, while the terms of higher orders 
are negligible.
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bodies [13]. Otherwise, similar models with respect to the low-
frequency scattering by metallic objects of different geometries, 
which are surrounded by a lossless medium [14-18], are very useful, 
since they find direct application to bio-medical engineering.

In this project, we intend to provide a better insight to 
the different structures of a solid metal scatterer in a lossless 
surrounding, when this body is illuminated by a magnetic 
dipole source that operates at low frequencies. We revisit the 
interesting case of the geometrically complete isotropic scatterer, 
as a potential application to biosciences and non-invasive 
medical techniques. Therein, we solve analytically the forward 
electromagnetic scattering problem in the low-frequency regime 
with the appropriately chosen conditions on the non-penetrable 
sphere and at infinity. Hence, we arrive to a sequence of boundary 
value problems, involving Laplace’s and Poisson’s interconnected 
equations, whose solution provides us with the scattered fields in 
terms of spherical harmonic eigenfunctions [5,6] with the proper 
numerical implementation.

Theoretical Development
The geometrical configuration of the scattering problem under 

consideration is shown in (Figure 1). In view of the Cartesian basis
( )1 2 3ˆ ˆ ˆ, , ,x x x , we define the electric field xE  and the magnetic field 

xH  where , ,x p s t= denote the primary (also referred as incident) 
p , the scattered s and the total t electromagnetic fields, accounting 

the fact that ( ) ( ) ( )t p s= +E r E r E r and ( ) ( ) ( )t p s= +H r H r H r . Here, 
1 1 2 2 3 3ˆ ˆ ˆx x x= + +r x x x  is the spatial position vector, while 0r  

stands for the position of the magnetic dipole m  which radiates 
at a low circular frequency ω  The surface S of the impenetrable 
( bσ → +∞ ) spherical scatterer of radius α  is characterized 
by the outward unit normal vector n̂  while the properties of the 
surrounding medium are the dielectric permittivity ε , the magnetic 
permeability µ  and the electric conductivity 0σ → (lossless 
medium), being connected via the wave number k ω εµ= , in 
terms of the operating frequency. The area of electromagnetic 
scattering is confined by Ω  assumed to be

( ) { }3
0 ,V RΩ ≡ − r      (1)

Figure 1: Representation of the scattering problem.

Excluding the singular point of the source position, whose 
arbitrary orientation is determined by the relation

3

1

ˆ .j j
j

m
=

=∑m x      (2)

The involved electromagnetic fields satisfy the Maxwell’s 
equations, in view of the ∇  and ∆  operators [5], 

( ) ( )x xiωµ∇× =E r H r  and ( ) ( )s siωε∇× = −H r E r   (3)

for every ∈Ωr  and, , ,x p s t= , providing the Helmholtz 
equations.

( ) ( ) ( ) ( )2 2 ,x xk k∆ + = ∆ + = ∈ΩE r H r 0 r    (4)

with boundary condition on the spherical surface

( )ˆ 0t⋅ =H rn  and ( )ˆ t× =E r 0n , S∈r    (5)
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for , ,x p s t= , canceling the normal component of the total 
magnetic field and the tangential components of the total electric 
field. The radiation Silver-Müller conditions for the scattered fields 
are given by

( )
( )

( )
( )

lim , ,
s s

s s
ik

→+∞

    
 ×∇× + = ∈Ω           

r

H r H r
r r 0 r

E r E r   (6)

securing the proper behavior of the fields at infinity.

Within the framework of the low-frequency theory, we expand 
all the fields in terms of positive integral powers of ( )ik , wherein i  
is the imaginary unit. Therefore,

( ) ( ) ( )
,

!0

n
x x

n

ik
nn

+∞
= ∈Ω∑

=
H r H r r  for , ,x p s t= , (7)

( ) ( ) ( )
,

!0

n
x x

n

ik
nn

+∞
= ∈Ω∑

=
E r E r r  for , ,x p s t= . (8)

As ω  is considered very low, the term ( )ik  becomes low as well, 
thus, when n∈ increases, then ( )nik  decreases rapidly. Therefore, 
without loss of generality, we restrict ourselves to orders for 

0,1,2,3n = , Since the terms of higher orders ( )4n ≥  can be omitted. 
The low-frequency expansions of the incident fields are known 
[14] and they imply that the surviving (non-zero) electric and 
magnetic scattered fields are 0 2 3 1 3, , , ,s s s s sH H H E E  (due to the fact that 

1 0 2
p p p= = =H E E 0 , it holds 1 0 2

s s s= = =H E E 0 , which are the requested 
scattered electromagnetic fields, which will be calculated based on 
the analysis that follows.

Substituting the expansions (7) and (8) into the fundamental 
equations (3) and the conditions (5) and (6), we arrive to a 
complicated sequence of boundary value problems for the scattered 
fields. Actually, the first task is to reduce the Maxwell’s relations (3) 
for x s=  to the corresponding low-frequency counterparts, i.e.,

( ) ( )1 , 0s s
n nn nµ

ε −∇× = ≥E r H r  (9)

and ( ) ( )1 , 0s s
n nn nε

µ −∇× = − ≥H r E r  (10)

in which we have 0,1,2,3.n =  Thereafter, we are led to the 
interconnected partial differential equations

( ) ( ) ( )0 0 0 ,s s s∆ = ⇒ = ∇ΦH r 0 H r r  (11)

( ) ( ) ( ) ( ) ( )2 0 2 2 02 ,s s s s s∆ = ⇒ = + ΦH r H r H r r r rΧ  (12)

( ) ( ) ( )3 3 3 ,s s s∆ = ⇒ = ∇ΦH r 0 H r r  (13)

( ) ( )1 2
1 ,
2

s sµ
ε

= − ∇×E r H r  (14)

( ) ( )3 16s s∆ = ⇒E r E r  ( ) ( ) ( )1
3 3

16 ,
4

s
s s d

π Ω

′ 
′= + − Ω∫∫∫ ′−  

E r
E r r

r r
Χ  (15)

by means of the easy-to-handle harmonic scalar 0 3,s sΦ Φ  and 
vector 2 3

s sΧ , Χ  functions, noting that 

( ) ( ) ( ) ( )0 2 3 30, , 0,s s s s∆Φ = ∆ = ∆Φ = ∆ =r r 0 r r 0Χ Χ  (16)

for any ,∈Ωr  while the second term on the right-hand side of 
(15) is an immediate consequence of the fundamental solution of 
La-place’s equation [6]. On the other hand, the surface boundary 
conditions (5) become.

( ) ( ) ( )ˆ ˆ ; 0, 0, 2,3,0
t p s
n n n n ⋅ ≡ ⋅ + = = H r H r r H rn n  (16)

( ) ( ) ( )ˆ ˆ ; , 1,3,0
t p s
n n n n × ≡ × + = = E r E r r E r 0n n  (17)

whilst the infinity conditions yield

( )
( )

( )
( )

1

1

lim , .
s s
n n

s s
n n

n −

−

    
 ×∇× + = ∈Ω      →+∞      

H r H r
r r 0 rr E r E r

 (18)

 

Our goal is to solve the incorporated boundary value problems 
(11)-(18) by introducing the best fitted spherical geometry [5]

2 2
1 2 3ˆ ˆ ˆ1 cos 1 sin ,r r rζ ζ ϕ ζ ϕ= + − + −r x x x

Where [ )0, ,r∈ +∞  [ ]cos 1,1ζ θ≡ ∈ −  and [ ]0,2ϕ π∈  with outward 
unit normal vector ˆ ˆ / r≡ = rn r .

Spherical Scattered Fields
In order to proceed to the solution, we are obliged to present 

the basic mathematical tools, which are used to this project [6]. 
Bearing this in mind, we initially give the expansion of any harmonic 
function ( )u r  either scalar or vector) that belongs to the kernel 
space of the Laplace’s operator ( ) 0,u∆ =r  that is

( ) ( ) ( )/ / / /
, , , ,ex

0 0

m q m q m q m q
in in ex

m
u A u A u

= =

+∞
 = +∑ ∑  r r r

   





 (19)

for [ ) [ ] [ ){ }0, , 1,1 , 0, 2 .r ζ ϕ π∈ ∈ +∞ ∈ − ∈r  Expansion (19) is a 
linear combination / /

, ,( ,m q m q
in exA A

 

 are arbitrary constant coefficients) 
with respect to the functions 

( ) ( )/ /
, ,m q m q
inu r Y ζ ϕ=r 

 

 (20)

and ( ) ( ) ( )1/ /
, , ,m q m q
exu r Y ζ ϕ− +=r 

 

 (21)

which define the respective interior and exterior spherical 
harmonic eigenfunctions, written in terms of the surface spherical 
harmonics.

( ) ( ) ( )/ , ,m q m q
mY P fζ ϕ ζ ϕ=

 

 (22)

in view of the associated Legendre functions of the first kind 
( ) ,mP ζ


 where 

( )
cos ,
sin ,m

q m q e
f

m q o
ϕ

ϕ
ϕ

=
=  =  (23)

stand for the even ( )q e=  and the odd ( )q o=  trigonometric 
functions. The surface spherical harmonic functions ( )/ ,m qY ζ ϕ

  are 
orthogonal with respect to the surface integral.

( ) ( )
2 1

/ /

0 1
, ,m q m qY Y d d

π
ζ ϕ ζ ϕ ζ ϕ

+
′ ′

′
−

=∫ ∫
 

( )
( )

!1 4
2 1 ! mm qq

m

m
m

π δ δ δ′ ′ ′

+
=
ε + − 



 
(24)

for any 0,≥  0,1,2,...,m =   and , .q e o=  In addition, the 
following expansion

( ) ( )
0

/ /
, 0 , 0

0 ,0

1 1 , <m q m q
ex in

m q e o
u

R
ρ

=

+∞

= =
= = ∑ ∑ ∑

−
r r r r

r r 



 

 (25)

With

( ) ( )
( ) ( )/ /

, 0 , 0

!
!

m q m q
ex m ex

m
u

m
ρ

+
= ε

+
r r

 





 (26)

is very useful to our calculations and refers to domains in which 
the singular point is far away from the scattering region 0< ),(r r  as 
in our case.
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Turning, now, to our specific problem, we remind the fact that 
the region of electromagnetic activity Ω  is confined by the set.

( ) [ ) [ ] [ ){ } { }0, , : , , 1,1 , 0, 2 ,r rζ ϕ α ζ ϕ πΩ = ∈ +∞ ∈ − ∈ − r  (27)

restricting ourselves to an exterior-type problem. Hence, the 
general expansion (19) is reduced accordingly to attain proper 
behavior at infinity, by setting /

, 0m q
inA =



 herein and in every similar 
expansion in the forthcoming analysis. In what follows, we readily 
define as ( ) ( ), , , ,s sr ζ ϕ α ζ ϕ= ≡r  and as ( )0 0 0 0, ,r ζ ϕ=r  the 
position vectors pointing on the surface of the spherical body and at 
the position of the dipole source, while we omit to present the full 
analysis, since the calculations, based on (19)-(25) are cumbersome 
and out of the spirit of this research.

We begin with the evaluation of 0 ,sΗ  whose solution is given 
through the scalar harmonic potential

( ) ( )/
0 , 000 0 , 4
s m q

ex
m q e o

ρ
π

+∞

= = =

 Φ = − ⋅∇∑ ∑ ∑   

mr rr






( ) ( )
2 1

/1
, ,

1
m qr Yα ζ ϕ

+ − + 
+ 











 (28)

consequently from (11), we obtain

( ) ( )
( )

2 1

0
0 0 ,

!
1 !

s
m

m q e o

m
m

α ++∞

= = =

 −= − ε∑ ∑ ∑ 
+ +

H r










 

( ) ( )/ /
, 0 ,0

,
4

m q m q
ex exu u

π
 ⋅∇ ∇    

m r rr    (29)

 for every .∈Ωr  Next, we proceed to the ( )2 ,sH r  wherein we 
need the vector harmonic function

( ) ( ) ( )1/ /
2 ,

0 0 ,
,s m q m q

ex
m q e o

r Y ζ ϕ
∞ − +

= = =
= ∑ ∑ ∑r b





 



Χ  (30)

and the field (27), in order to come up (via (12)) with the final 
expansion

( ) ( )/ /
2 , , 000 0 , 4
s m q m q

ex ex
m q e o

ρ
π

∞

= = =

  = − ⋅∇∑ ∑ ∑    

mH r b r rr


 



( ) ( )
2 1

1 / , .
1

m qr Yα ζ ϕ
+

− +
+ 









  (31)

The constants 
/ / / /

, ,1 1 ,2 2 ,3 3ˆ ˆ ˆm q m q m q m q
ex b b b= + +b

   

x x x  for any value of 
0,≥  0,1,2,...,m =   and , ,q e o=  satisfy the three independent 

relationships.

( )
3 / , /

, ,
0 0 , 1

, ,m q m q
j j

m q e o j
f r bs

κ ζ ϕ
+∞

= = = =

∑ ∑ ∑ ∑



 



( )/ ,
0, , ; 0, 1, 2, 3,m q r

sg r r kζ ϕ− = =  (32)

Wherein ( )/ ,
, , ,m q
j sf rκ ζ ϕ



 and ( )/ ,
0, , ;m q

sg rκ ζ ϕ r
  have complicated 

forms (see [14] for the exact formulae) in terms of the functions 
( ) ( ), .m q

mP fζ ϕ


 Thereafter, relations (32) are handled with the aid of 
orthogonality (24), so as to recover 

/
, .m q
exb

  In the sequel, we move to 
the presentation of the solution of 3

sΗ  which provides us with 

( ) ( ) ( ) ( )
3

3
1 ˆ ˆˆ ˆ ˆ ˆ2 ,

2
s

r
α

π
   = ⋅ ⋅ ⋅    

H r m m mr r− ζ ζ − ϕ ϕ  (33)

Where ( )ˆˆ ˆ, ,r ζ ϕ  denote the unit normal vectors [5] of the 
spherical geometry. This concludes the recovering of the magnetic 

low-frequency fields. Our next step includes the finding of the 
corresponding low-frequency electric fields, beginning with 1 ,sΕ  so

( ) ( ){ / /
1 , ,

0 0 ,

1
2

s m q m q
ex ex

m q e o

µ µε
∞


= = =

= − ∇ Χ∑ ∑ ∑E r r b


 



( )
2 1

/
, 00

,
4 1

m q
ex

αρ
π

+  − ⋅∇   +  

mr rr








 (34)

which is readily recovered from (31), using (14). Our final task 
involves the evaluation of 3 ,sΕ  which is connected with the solution 
in (34), reading. 

( ) ( ) ( )1
3 3

3 ,
2

s
s s d

π Ω

′
′= − Ω∫∫∫ ′−

E r
E r r

r r
Χ  (35)

Where,

( ) ( ) ( )1/ /
3 ,

0 0 ,
, .s m q m q

ex
m q e o

r Y ζ ϕ
∞ − +

= = =
= ∑ ∑ ∑r d





 



Χ  (36)

At this stage, we apply a tricky mathematical technique, 
according to which we write.

( )13
2

s

d
π Ω

′
′− Ω =∫∫∫ ′−

E r
r r

( ) ( ) ( )1/ / / /
, ,

0 0 ,
, ,m q m q m q m q

in ex
m q e o

r r r Y ζ ϕ
+∞ − +

= = =
 = + +∑ ∑ ∑  S







   



s s
 (37)

Where functions 
/ / /

, ,, ,m q m q m q
in exS

  

s s  are determined (e.g., see [14]) 
by the limiting procedure ( )13

2

s

d
π Ω

′
′− Ω =∫∫∫ ′−

E r
r r

( )2 1 0 1 2

0 0 1

3 lim
2

sr e

e
r dr d d

π

α
ζ ϕ

π

−

→ −

′ ′ ′ ′ ′= − ∫ ∫ ∫ ′−

E r
r r

( )2 1 0 1 2

0 0 1 0

lim
sr e

e r e
r dr d d

π
ζ ϕ

+

→ − −

′
′ ′ ′ ′+ ∫ ∫ ∫ ′−

E r
r r

( )2 1
1 2

0 0 1 0

lim ,
s

e r e
r dr d d

π
ζ ϕ

+∞

→ − +

′ ′ ′ ′ ′+ ∫ ∫ ∫ ′− 

E r
r r  (38)

Therefore,
( ) ( ) ( ){ 1/ /

3 , ,
0 0 ,

s m q m q
ex ex

m q e o
r

∞ − +

= = =
= +∑ ∑ ∑ E r d





 



s

( ) ( )}/ / /
, , .m q m q m q
in r r Y ζ ϕ+ + S

  

s  (39)

Again, herein, the constants 
/ / / /

, ,1 1 ,2 2 ,3 3ˆ ˆ ˆm q m q m q m q
ex d d d= + +d

   

x x x  for 
any value of 0,≥  0,1,2,...,m = 

 and , ,q e o=  satisfy the three 
independent expressions. 

( )
3 / , /

, ,
0 0 , 1

, ,m q m q
j j

m q e o j
f r ds

κ ζ ϕ
+∞

= = = =

∑ ∑ ∑ ∑



 



( )/ ,
0, , ; 0, 1, 2,3,m q k

sg r rζ ϕ κ−− = =  (40)

Wherein ( )/ ,
, , ,m q
jf rs

κ ζ ϕ
  and ( )/ ,

0, , ;m qg rs
κ ζ ϕ r



 are complicated 
functions of ,ζ ϕ  (see [14] for the exact formulae) in terms of 

( ) ( ), .m q
mP fζ ϕ



 Thereafter, relations (37) are handled with the 
help of orthogonality (24), so as to obtain /

, .m q
exd



Numerical Implementation
In order demonstrate the efficiency of the above analysis by 

means of assessing the validity and the accuracy of the produced 
formulae, we intend to provide plots that display the numerical 
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behavior of the scattered magnetic field (7) for ,x s=  i.e., s ≡H H  
in, A / m which is usually measured. We approximate the low-
frequency expansions up to the third degree ( 0,1, 2,3)n =  and we 
utilize the associated magnetic counterparts (29), (31) and (33), 
posing un upper limit L to the infinite series ( 0,1,..., ),L=  which 
is appropriately chosen until convergence is obtained. We adopt 
the spherical geometry in Figure 1, by considering a perfectly 
conducting sphere of extremely large conductivity and radius 

50 m.α =  The spherical body is embedded in a homogeneous vacuum 
environment of dielectric permittivity-ty 12

0 8.854 10 F / m,ε ε −= = ×  

magnetic permeability 7 2
0 4 10 N / Aµ µ π −= = ×  and approximately 

zero electric conductivity. Thereafter, we illuminate the object 
with a vertically orientated dipole source 3 3ˆmm = x  of strength 

3 2
3 4 10 A m ,m π= ×  which is set at ( )0 200m,0,200m=r  and radiates 

at the frequency 50Hzω =  . Bearing in mind this discussion, 
the scattered magnetic field H  is evaluated along a line at 

[ ]( )0,200m, 200,200 m−  and in (Figure 2) we provide graphical 
illustrations for the real and imaginary parts of the scattered 
magnetic field under consideration in A / m.

Figure 2: The real (Re) and imaginary (Im) parts of the low-frequency (50Hz)  scattered magnetic field in A / m , 
which is excited by a vertically orientated magnetic dipole of strength 3 24 10 A mπ ×  and location at ( )200m,0,200m . The 

measurement line is placed at 0,200m, 200,200 m       
− , obtaining the field on the vertical axis along 3x  in m .
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The low frequency scattered magnetic field, which is sketched in 
(Figure 2), is verified to attain similar behavior with the respective 
work in the spherical realm [7], wherein the only difference is that 
the surrounding is conductive, changing the concept but keeping 
the idea. This fact secures the credibility of the obtained results 
in a numerical level. On the other hand, the source location and 
the location of the measurement line justify the set of the plotted 
graphs, which appear as expected. Otherwise, in an analytical level, 
the closed-form solutions in this project are given in a fashion that 
matches the procedure that is followed in many related published 
articles (e.g. see [14-18]) for more details. 

Conclusion
In this work, we investigated the low-frequency approximation 

of the fields that are scattered by a perfectly conductive sphere, 
embedded in a lossless medium and excited by a far-field and 
arbitrarily orientated time-harmonic magnetic dipole, which 
produces the primary electric and magnetic fields. The developed 
analytical methodology was based on the introduction of power 
series expansions of the electromagnetic fields in terms of the wave 
number of the medium, keeping the first four terms that are sufficient 
in the low-frequency spectrum, while the terms of higher orders are 
negligible. The classical Maxwell-type problem was transformed 
to a sequence of interconnected elliptic-type relationships, which 
are accompanied by the impenetrable boundary conditions on the 
surface of the scatterer, while the limiting behavior at an infinite 
distance was readily secured. Upon the introduction of a suitable 
spherical geometry, the obtained boundary value problems were 
solved in an analytical fashion, providing three-dimensional 
compact formulae, in view of infinite series expansions of spherical 
harmonic eigenfunctions, while the outcomes of this research were 
validated via a consistent numerical illustration.
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