
Adapting Hartigan & Wong K-Means for the
Efficient Clustering of Sets1

Libero Nigro1* and Franco Cicirelli2

1DIMES, Engineering Department of Informatics Modelling Electronics and Systems Science
University of Calabria, Italy
2CNR - National Research Council of Italy - Institute for High Performance Computing and
Networking (ICAR), Italy

Introduction
Clustering is a fundamental application in data science. Its goal is to partition data into

groups (clusters) in such a way that data in the same cluster are similar to one another, and
data in different clusters are dissimilar. The similarity is based on a distance metric that
often coincides with the Euclidean distance. K-Means [1,2] is a de facto standard clustering
algorithm due to its simplicity and efficiency. Its properties have been thoroughly investigated
[3,4]. K-Means, though, normally deals with data points having numerical attributes. Handling
data with mixed numerical and categorical attributes or only categorical attributes is difficult
[5] and can require introducing a not Euclidean distance function.

Adapting K-Means to clustering data objects which are sets of elementary items, must
solve problems similar to the case of categorical attributes. In addition, the need exists to
handle sets of different sizes. Recently, an approach to clustering sets was proposed [6]
which adapts K-Means and Random Swap [7,8] by using a distance measure that modifies
the classical Jaccard or Otsuka-Ochiai cosine distance. The clustering algorithms were then
successfully experimented through several benchmark datasets [9]. A different, yet effective,
approach was described in [10]. The new approach avoids the problem of finding the meaning
of the objects in a cluster, by using the medoid concept [11]. Two algorithms for clustering

Crimson Publishers
Wings to the Research

Research Article

*Corresponding author: Libero Nigro,
DIMES–Engineering Department of
Informatics Modelling Electronics and
Systems Science University of Calabria,
87036 Rende, Italy

Submission: August 08, 2023
Published: August 25, 2023

Volume 3 - Issue 3

How to cite this article: Libero Nigro*
and Franco Cicirelli. Adapting Hartigan &
Wong K-Means for the Efficient Clustering
of Sets. Open Acc Biostat Bioinform. 3(3).
OABB.000564. 2023.
DOI: 10.31031/OABB.2023.03.000564

Copyright@ Libero Nigro, This article is
distributed under the terms of the Creative
Commons Attribution 4.0 International
License, which permits unrestricted use
and redistribution provided that the
original author and source are credited.

ISSN: 2578-0247

1Open Access Biostatistics & Bioinformatics

Abstract

This paper proposes an algorithm, named HWK-Sets, based on K-Means, suited for clustering data which
are variable-sized sets of elementary items. An example of such data occurs in the analysis of medical
diagnosis, where the goal is to detect human subjects who share common diseases so as to predict future
illnesses from previous medical history possibly. Clustering sets is difficult because data objects do not
have numerical attributes and therefore it is not possible to use the classical Euclidean distance upon
which K-Means is normally based. An adaptation of the Jaccard distance between sets is used, which
exploits application-sensitive information. More in particular, the Hartigan and Wong variation of
K-Means is adopted, which can favor the fast attainment of a careful solution. The HWK-Sets algorithm
can flexibly use various stochastic seeding techniques. Since the difficulty of calculating a mean among
the sets of a cluster, the concept of a medoid is employed as a cluster representative (centroid), which
always remains a data object of the application. The paper describes the HWK-Sets clustering algorithm
and outlines its current implementation in Java based on parallel streams. After that, the efficiency and
accuracy of the proposed algorithm are demonstrated by applying it to 15 benchmark datasets.

Keywords: Clustering sets; Hartigan and Wong K-Means; Jaccard distance; Medoids; Seeding methods;
Java parallel streams

Abbreviations: SDH: Sum of Distances to Histogram; ARI: Adjusted Rand Index; SDM: Sum of Distances
to Medoids; CI: Centroids Index; SI: Silhouette Index

1This paper is an extended version of the preliminary paper of the same authors
“An efficient Algorithm for Clustering Sets” presented at the 27th Int. Symp. on
Distributed Simulations and Real Time Applications” (DSRT 2023), Singapore,
4-6 October, 2023.

http://dx.doi.org/10.31031/OABB.2023.03.000564
https://crimsonpublishers.com/oabb/

2

Open Acc Biostat Bioinform Copyright © Libero Nigro

OABB.MS.ID.000564. 3(3).2023

sets were experimented: K-Medoids [11,12] and a medoid-based
version of Parallel Random Swap [8]. With respect to the approach
in [6], a distance function among sets was defined which exploits
global information about the use of the basic items which compose
the sets. The work described in this paper extends the approach
described in [10] through an adaptation of K-Means which retains
the generality as in [6,10] while providing high computational
efficiency and clustering reliability. More in particular, the original
contribution is a medoid-based development of the Hartigan &
Wong variation of K-Means [13,14], named HWK-Sets, which can
work with careful seeding methods [14-18]. Due to the intrinsic
good properties of Hartigan & Wong algorithm, HWK-Sets are
capable of finding a good clustering solution by few restarts with
few iterations.

HWK-Sets are currently implemented in Java by parallel
streams [8,19,20] thus ensuring good time efficiency on a multi-
core machine. The recourse to parallelism is key for scalability,
by reducing, in non- trivial datasets, the burden of the 𝑂(𝑁2)
computational cost implied by the all-pairwise distance problem
which necessarily accompanies the medoids management and the
calculation of specific clustering accuracy indexes. The effectiveness
of the new clustering algorithm is demonstrated by applying HWK-
Sets to 15 benchmark datasets [6,10]. The experimental results
confirm the achievement of reliable clustering solutions with a good
computational speedup. The paper is structured as follows. First
the background work is briefly reviewed in section II. Then the new
algorithm HWK-Sets are detailed in section III, together with some
Java implementation issues. The paper continues by illustrating,
in section IV, the adopted experimental setup and by reporting
the achieved clustering results. Both the clustering accuracy and
the computational efficiency are demonstrated. Finally, section V
concludes the paper with an indication of on-going and future work.

Background
In the following, the main concepts of the work reported in

[6,10] are summarized, together with issues of seeding methods
and clustering accuracy indexes. A dataset is assumed whose data
objects are variable-sized sets of elementary items taken from a
vocabulary of size 𝐿 (the problem resolution):

{ }
1

l

j ji i
X x

=
=

For example, the records of patient diagnoses expressed by
ICD-10 [6,21] disease codes can be considered. Clustering such
records aims to find groups of similar patients so as to support the
estimation of the risk for a patient to develop some future illness
due to his/her previous medical history and from correlations to
other patients with similar diseases. A key point of the approach in
[6] which extends K-Means, named K-Sets, and Random Swap [7,8],
named K-Swaps, are the techniques adopted for coping with the
mean problem in clusters, which in turn depends on the distance
notion among data objects (sets). As a workaround to the difficulty
of calculating a mean among sets, a representative data object
(centroid) in the form of a histogram is associated with each cluster.
The histogram stores its local frequency of use for each item which
occurs in the cluster. A histogram contains at most m (e.g., m=20)

distinct items. For clusters having more than m items, the first m
most frequent items are retained. K-Means partitions data points
according to the nearest centroid. A distance measure between a
data object (a set) 𝑋 of size 𝑙, and a representative histogram ℎ is
proposed which, in a case, modifies the common Jaccard distance
between two sets 𝑋 1 and 𝑋 2:

() 1 2
1 2

1 2

, 1J
X X

d X X
X X

= −

Adaptation is needed because in the case, particularly for large
values of L, an intersection between two sets has a few elements
in common, the distance measure can lose its meaning. Therefore,
for the common items in 𝑋 and ℎ, a weight is used, which is the
frequency of the item in the local histogram ℎ:

()
()

()
,

,
mod , 1

1

x X x h h ii i
J

y h x X x hh ii i i

f x
ified d X h

f y

∈ ∈

∈ ∈ ∉

∑
= −

+∑ ∑

Similarly, a modified distance notion based on Otsuka-Ochiai
cosine can be defined. Assuming, as usual, that the number K
of clusters is known, K-Sets initially chooses K representatives
in the dataset by a uniform random distribution. Such initial
representatives have unitary frequency for each component item.
Then the two basic steps of assignment (i.e., partitioning data
objects according to the nearest centroid/representative rule) and
centroids update (i.e., the new representative of each cluster is
established as the new histogram of the items of the data objects
which compose the cluster) are iterated. In particular, the objective
function cost, i.e., the Sum of Distances to Histogram (𝑆𝐷𝐻) in
clusters, is computed after each update step. K-Sets converges
when the 𝑆𝐷𝐻 stabilizes, that is the difference between current
and previous value of 𝑆𝐷𝐻 is smaller than a numerical tolerance
𝑇𝐻 (e.g., 𝑇𝐻=10−8). The same adaptations apply to K-Swaps which
integrates K-Sets as a local refiner of a global centroid configuration
that, at each swap iteration, is defined by replacing a randomly
chosen representative with a randomly selected data object of the
dataset.

Good clustering results are documented in [6], by applying
K-Sets (and K-Swaps) to 15 benchmark datasets (𝑆𝑒𝑡𝑠 data in [9]),
which all are provided of ground truth information in the form of
partition labels for the data objects. Besides the resultant value of
the 𝑆𝐷𝐻 cost, the accuracy of a clustering solution was checked
by computing the Adjusted Rand Index (𝐴𝑅𝐼) [22] between an
emerged solution (partition labels) and the ground truth partition
labels. Differently from [6], in [10] a global histogram 𝐻 extracted
from the whole dataset is preliminarily built, which associates with
each distinct item, in the L vocabulary, its frequency of use in the
whole dataset, denoted by fH(𝑥𝑖). The global frequency of an item
is used as an application-dependent weight which replaces 1 when
counting, by exact match, the size of the intersection of two sets;
not common items are instead counted as 1. The following is the
proposed weighted Jaccard distance:

()
()

() ()1 2, 1
x jj

J
x xj ij i

x
d X X

x x

δ

δ δ

∑
= −

+∑ ∑

3

Open Acc Biostat Bioinform Copyright © Libero Nigro

OABB.MS.ID.000564. 3(3).2023

where: 𝛿(𝑥𝑗) = 𝑓𝐻(𝑥𝑗) if 𝑥𝑗 ∈ 𝑋 1 ∩ 𝑋 2, 0 otherwise; () 1xiδ = if 𝑥𝑖 ∉
𝑋 1 ∩ 𝑋 2, 0 otherwise.

Of course, 1 is the maximal distance between two sets, and 0
the minimal one. If the weights of items evaluate to 1, the distance
measure reduces to the standard Jaccard distance. The global
histogram was chosen because the occurrence frequency of an item
(for example the disease code in a medical application) naturally
mirrors a relative importance of the item w.r.t. all the other items.
The adoption of the new distance function has some important
consequences. First, it enables the distance between any pair of
data objects (sets) to be computed, whereas in [6] only the distance
from a data object to the local cluster representative histogram
can be calculated. Second, the problem of dimensioning the local
histogram in [6] is avoided. Third, the new distance permits an
exploitation of several seeding methods (see also the next section)
including the Maximin [14], K-Means++ [15] and Greedy K-Means++
[16-18] for the initialization of centroids, whereas only the uniform
random method is adopted in [6]. Fourth, multiple and expressive
clustering indexes can be computed for assessing the accuracy of an
achieved clustering solution.

For the abovementioned reasons, the approach in [10] more
naturally favors classical K-Means to be adapted for clustering sets.
To cope with the mean problem which K-Means demands to solve in
the update step, the approach advocated in [10] purposely suggests
the use of medoids [11,12]. A medoid always remains a data
object of the dataset. It is defined as the particular data object in
a cluster, which has minimal sum of the distances to the remaining
data objects of the cluster. Here too, the possibility of computing
pairwise distances are fundamental. Similarly, to [6], in [10] the
Sum of Distances to Medoids (𝑆𝐷𝑀) is assumed as the objective
cost to minimize:

()
1

,
N

i j
i X Ci j

SDM d X m
= ∈

= ∑ ∑

where 𝑚𝑗=𝑛𝑚(𝑋 𝑖) is the nearest medoid to the data object
𝑋 𝑖, that is: 𝑚𝑗=𝑛𝑚(𝑋 𝑖), 𝑖𝑓 𝑗=𝑎𝑟𝑔𝑚𝑖𝑛1≤ℎ≤𝐾 𝑑(𝑋 𝑖, 𝑚ℎ). In this paper,
the Hartigan & Wong [13,14] variation of K-Means is actually
considered (see later in this paper) because of its natural capability
of favoring the attainment of better clustering results.

Seeding methods

Let 𝑋 𝑖 be a data object and D(𝑋 𝑖) be the minimal distance of
𝑋 𝑖 to the currently existing L centroids/medoids, 1≤L≤K. All the
following methods start by defining the first medoid by a uniform
random selection of a data object in the dataset. Each method is
then continued until all the K medoids are established.

a. Maximin: the next medoid is defined as a data object of
the dataset having maximal D(𝑋 𝑖).

b. K-Means++: the next medoid is defined by a random
switch among the data objects of the dataset by first associating to
each data object 𝑋 𝑖 the probability of being chosen as:

 () ()
()

2

2

1

i
i N

j
j

D X
X

D X
π

=

=
∑

c. Greedy K-Means++: the next medoid is defined by
executing S times the K-Means++ procedure and selecting the
data object, among the S candidates, which, combined with the
L existing medoids, mostly reduces the objective cost. The value
𝑆=⌊2+log 𝐾⌋, suggested in [17], is chosen in the experiments as it
represents a trade-off between the improved seeding and the extra
computational cost.

Clustering accuracy indexes

In [6] the quality of an achieved clustering solution is
evaluated by the (hopefully minimal) 𝑆𝐷𝐻 cost, and the value of
the Adjusted Rand Index (𝐴𝑅𝐼) [22] which captures the similarity/
dissimilarity degree between the obtained solution and the ground
truth (centroids or partition labels) solution which comes with
the benchmark datasets. The 𝐴𝑅𝐼 values are in the continuous
interval [0,1] with 1 which mirrors the best similarity, and 0 which
expresses the maximal dissimilarity. In this paper, as in [10],
besides the values of the Sum of Distances to Medoids 𝑆𝐷𝑀 and 𝐴𝑅𝐼
indexes, the Centroids Index 𝐶𝐼 [23,24] and the Silhouette Index 𝑆𝐼
[8,14,25,26] are also used for assessing the accuracy of a clustering
solution. The 𝐶𝐼 value qualifies a solution, by indicating the number
of centroids/medoids (or, equivalently, the partition labels of data
objects which compose clusters) that were incorrectly determined.
A 𝐶𝐼=0 is a precondition for a correct solution. Finally, the 𝑆𝐼 index
logically complements the indication of 𝑆𝐷𝑀. Whereas a minimal
value of 𝑆𝐷𝑀 mirrors the internal compactness of clusters, a 𝑆𝐼
close to 1 characterizes well-separated clusters. A SI close to 0
denotes a high degree of overlap among the clusters. A SI which
tends to -1 indicates incorrect clustering.

As in [8,20], the Java parallel implementation of the proposed
clustering algorithm is a key for smoothing the 𝑂(𝑁2) computational
cost due to all pairwise distances calculation required, e.g., in the
update phase of medoids, as well as in the evaluation of clustering
indexes such as the Silhouette Index, and in the implementation of
careful seeding methods.

Proposed Algorithm for Clustering Sets
In this work, the Hartigan & Wong variation of K-Means [13,14]

was selected because, as shown in [13], it has a lower probability,
w.r.t. classical K-Means, to be trapped into a local minimum of the
function cost, although with a higher computation cost implied
by the data objects exchanges. The Hartigan & Wong’s K-Means
was adapted to work with sets and medoids. The operation of the
resultant algorithm, named HWK-Sets, is summarized in the Alg. 1.
The notation 𝑛𝑚(𝑋 𝑖) indicates the nearest medoid of a data object
𝑋 𝑖.

Algorithm 1. The operation of HWK-Sets

Input: the dataset 𝑋 of 𝑁 data objects, and the number 𝐾 of
medoids/clusters

Output: the final 𝐾 medoids and associated clusters/partitions

1.define initial 𝐾 medoids by a seeding method

2.partition the dataset 𝑋 according to the 𝑛𝑚(.) rule

4

Open Acc Biostat Bioinform Copyright © Libero Nigro

OABB.MS.ID.000564. 3(3).2023

3. set 𝑠 =𝑡𝑟𝑢𝑒

4.for each data object 𝑋 𝑖∈𝑋 do

(a)remove 𝑋 𝑖 from its cluster 𝐶ℎ

(b)update the medoid 𝑚ℎ of modified 𝐶ℎ

(c)assign 𝑋 𝑖 to cluster 𝐶𝑙 if medoid 𝑚𝑙=𝑛𝑚(𝑋 𝑖)

(d)update the medoid 𝑚𝑙 of modified cluster 𝐶𝑙

(e) if 𝑙≠ℎ, set 𝑠 =𝑓𝑎𝑙𝑠 𝑒

5. if 𝑠 ==𝑓𝑎𝑙𝑠 𝑒, set 𝑠 =𝑡𝑟𝑢𝑒 and goto step 4

6. evaluate the 𝑆𝐷𝑀 of the final clustering solution.

A critical point in Algorithm 1 is the recurrent update of the
medoid during data object exchanges between a source cluster 𝐶ℎ
and a destination cluster 𝐶𝑙, after having extracted a data object
𝑋 𝑖 from 𝐶ℎ and added 𝑋 𝑖 to 𝐶𝑙. The new medoid 𝑚𝑗 of a cluster 𝐶𝑗

is identified as the data object of 𝐶𝑗 which has the minimal sum
of distances to the remaining data objects of 𝐶𝑗. Therefore, if 𝑝 is
the size of 𝐶𝑗 and 𝑞 is the maximum size of a data object 𝑋 𝑗∈𝐶𝑗, the
cost for finding the new medoid is 𝑂(𝑝 2𝑞 2). The overall cost for
completing one execution of step 4 of Alg. 1 is 𝑂(𝑁𝑝 2𝑞 2). Parallelism
can be exploited during the computation of a new medoid, when
all the pairwise distances among the data objects within a cluster
need to be generated. Such a cost could be minimized by building
and keeping the matrix of all the pairwise distances in the dataset.
However, considering the unacceptable memory cost of such a
matrix in large datasets, the HWK-Sets implementation purposely
maintains, in each data object, the sum of the distances to all the
remaining data objects of the same cluster.

Due to the stochastic initialization of the medoids in HWK-
Sets, implied by many seeding methods, the algorithm needs to be
repeated a certain number of times and the emerging best solution,
with minimal SDM, minimal (hopefully 0) Centroid Index CI, and
maximal (hopefully 1) Adjusted Rand Index ARI and Silhouette
Index SI, detected and persisted.

Implementation issues

An efficient implementation of HWK-Sets was achieved on
top of Java parallel streams [8,19,20], which rest on the fork/
join mechanism and a lock-free multi-threaded organization. The
dataset is split into multiple segments, and separate threads are
spawned to process the data objects of segments. Finally, the partial
results produced by working threads are combined to generate
the result. The operations to accomplish on the data objects are
conveniently expressed in a functional way by lambda expressions,
with the semantic constraint to avoid, in the lambda expressions,
any access and modification to shared data which would cause data
inconsistency problems. The basic rationale of the implementation
is to support an incremental strategy of the update operations
required during data object exchanges (steps from 4(a) to 4(d)
in Algorithm 1). First the initial partitions/clusters are built (see
step 2 of Algorithm 1). After that, for each data object, the total
sum of distances to the remaining objects of the same cluster is

computed and held in the data object. The provision aims to reduce
the computations required during data exchanges in the steps
from 4(a) to 4(d) of Algorithm 1, that is local updates to clusters,
including the distance sums maintained in the data objects. All of
this is a key for improving the calculation of new medoids in the
two clusters involved in data exchange.

Algorithm 2 details the partition step 2 of Algorithm 1, which
creates the initial clusters.

Algorithm 2. Initial partitioning (step 2 of Algorithm 1).

Stream<DataObject> p_stream=Stream.of(dataset);

if(PARALLEL) p_stream=p_stream.parallel();

p_stream

 .map(p -> {

 double md=Double.MAX_VALUE;

 for(int k=0; k<K; ++k) {

 double d=p.distance(medoids[k]);

 if(d<md) {

 md=d; p.setCID(k);

 }

 }

 clusters[p.getCID()].add(p);

 return p; })

.forEach(p->{});

A critical point in the Algorithm 2 is that each data object can
be processed in parallel. Therefore, to avoid inconsistencies, each
data object 𝑝 only modifies itself (its medoid identifier CID) in
the 𝑚𝑎𝑝 () method. However, managing cluster partitions (lists)
also requires care against simultaneous modifications issued by
multiple threads which process data objects belonging to the same
cluster. This problem was solved by realizing partition clusters as
𝐶𝑜𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐿 𝑖𝑛𝑘𝑒𝑑𝑄𝑢𝑒𝑢𝑒 s which are totally lock-free and safe
against simultaneous access by multiple threads. The terminal
operation 𝑓𝑜𝑟𝐸𝑎𝑐ℎ() in Algorithm 2, serves only to trigger the
execution of the intermediate 𝑚𝑎𝑝 () operations. Following the
initial formation of clusters, the total sum of the distances of
each data object 𝑝 to the remaining objects of the same cluster is
computed and stored in 𝑝 as shown in Algorithm 3. Algorithm 4
shows the computation of the new medoid of the cluster ℎ from
which the data object 𝑋 𝑖 is extracted (see step 4(a) in Algorithm 1).
From all the remaining data objects in cluster ℎ, the distance to 𝑋 𝑖
is subtracted. Similar operations are executed for defining the new
medoid of the cluster 𝐶𝑙 to which the object 𝑋 𝑖 is added (step 4(d)
of Algorithm 1).

Algorithm 3. The total sum of distances of data objects

for(int h=0; h<K; ++h) {

5

Open Acc Biostat Bioinform Copyright © Libero Nigro

OABB.MS.ID.000564. 3(3).2023

 Stream<DataObject> cStream=clusters[h].stream();

 if(PARALLEL) cStream=cStream.parallel();

final int H=h; //turn h into an effectively final variable

cStream

 .map(p->{

 double sum=0D;

 for(DataObject q: clusters[H]) {

 if(q!=p) sum=sum+p.distance(q);

 }

 p.setDist(sum);

 return p;

 })

 .forEach(p->{});

 }

Algorithm 4. Medoid computation of step 4(b) of Algorithm 1.

Stream<DataObject> cStream=clusters[h].stream();

if(PARALLEL) cStream=cStream.parallel();

neutral.setDist(Double.MAX_VALUE);

final int I=i;

DataObject best=cStream

 .map(p->{

 p.setDist(p.getDist()-p.distance(dataset[I]));

 return p;

 })

 .reduce(neutral, //neutral data object for comparisons

 (p1,p2)->

 { if(p1.getDist()<p2.getDist()) return p1;

 return p2; }

);

medoids[h]=new DataObject(best);

medoids[h].setN(clusters[h].size());

The incremental update operations during the data exchanges
can ensure a good execution performance (see later in this paper),
although the intrinsic sequential behavior of Algorithm 1.

Experimental Framework and Simulation Results
HWK-Sets were applied to 15 synthetic datasets which were

experimented in [6,10] and which are available from [9]. The
benchmark datasets are reported in Table 1. All the datasets are
composed of N=1200 data objects and are characterized by the

particular size 𝐿 of the vocabulary of elementary items, the number
𝐾 of clusters, the overlapping degree (the 𝑜 percentage) and the
type 𝑡 of clusters. The type 𝑡 can specify equally sized clusters (𝑡=1)
or various cases of unbalanced clusters. The design parameters
are recalled in the name of the dataset: 𝑑𝑎𝑡𝑎_𝑁_𝐿 _𝐾_𝑜_𝑡 (see Table
1). Particular combinations of the parameter values can make
challenging the clustering process. Ground truth partition labels are
provided for each benchmark dataset, which are useful for checking
the clustering accuracy by the 𝐴𝑅𝐼 index and the 𝐶𝐼 Centroid Index
[23,24]. All the execution experiments were carried out on a Win11
Pro, Dell XPS 8940, Intel i7-10700 (8 physical cores), CPU@2.90
GHz, 32GB Ram, Java 17.

Table 1: Synthetic datasets for clustering sets.

ID Dataset Type 4 Big 12 Small

1 data_1200_100_16_5_1 1 75 75

2 data_1200_200_4_5_1 2 120 60

3 data_1200_200_8_5_1 3 150 50

4 data_1200_200_16_0_1 4 187-188 37-38

5 data_1200_200_16_5_1 5 210 30

6 data_1200_200_16_5_2

7 data_1200_200_16_5_3

8 data_1200_200_16_5_4

9 data_1200_200_16_5_5

10 data_1200_200_16_10_1

11 data_1200_200_16_20_1

12 data_1200_200_16_40_1

13 data_1200_200_32_5_1

14 data_1200_400_16_5_1

15 data_1200_800_16_5_1

Experimental results

Due to its intrinsic behavior based on data exchanges among
clusters, Hartigan & Wong’s K-Means (see also [13]) tends more
naturally to evolve the centroids toward their optimal positions.
Therefore, few repetitions of HWK-Sets are in general expected to
be required for generating a good clustering solution, particularly
when a careful seeding method is employed. Table 2 shows some
preliminary results related to 𝑅=100 repetitions of HWK-Sets
applied to the challenging thirteenth dataset in Table 1, which
has the maximum number of clusters to fulfill, separately under
the uniform random (UNIF) and the Greedy K-Means++ (GKM++)
seeding. The average values of the 𝑆𝐷𝑀 (𝑎𝑆𝐷𝑀), 𝐴𝑅𝐼 (𝑎𝐴𝑅𝐼) and 𝐶𝐼
(𝑎𝐶𝐼) are reported, together with the Success Rate (𝑆𝑅), that is the
number of experiments among the 𝑅 which terminate with a 𝐶𝐼=0,
the average number of iterations (𝑎𝐼𝑇) executed per repetition/
run, and the parallel elapsed time (𝑃𝐸𝑇) in sec. The benefits of
careful seeding emerge from Table 2. On average, GKM++ requires
fewer iterations to HWK-Sets and ensures better values of the
clustering indexes. Table 3 is an update of Table 2 when 𝑅=20
repetitions are used. The superior character of GKM++ w.r.t. UNIF
is confirmed. Table 4 collects the values of the best solution which
emerged among the 𝑅=20 repetitions, under the UNIF and GKM++

6

Open Acc Biostat Bioinform Copyright © Libero Nigro

OABB.MS.ID.000564. 3(3).2023

seeding methods, that is the solution with minimal 𝑆𝐷𝑀, and the
corresponding values of the 𝐴𝑅𝐼, 𝐶𝐼 and 𝑆𝐼. As one can see from
Table 4, HWK-Sets was able to find a very good solution with the
two seeding methods, although GKM++ ensures greater accuracy. It
should be noted that the result 𝐶𝐼=0 always occurs at the minimum
of 𝑆𝐷𝑀, and that the success rate observed with GKM++ (see Table
3) is higher than that of UNIF.

Table 2: Average results of HWK-Sets applied to the dataset
13 of Table 1 under different seeding methods-R=100
repetitions.

Seeding aSDM aARI aCI SR aIT PET
(sec)

UNIF 2203.02 0.95 1.0 20% 7.0 49

GKM++ 2131.49 0.95 0.83 27% 4.8 55

Table 3: Average results of HWK-Sets applied to the dataset
13 of Table 1 under different seeding methods-R=20
repetitions.

Seeding aSDM aARI aCI SR aIT PET
(sec)

UNIF 2139.14 0.95 0.9 20% 7.2 11

GKM++ 2073.59 0.96 0.75 35% 4.45 11

Table 4: Best results of HWK-Sets applied to the dataset
13 of Table 1 under different seeding methods-R=20
repetitions.

Seeding SDM ARI CI SI

UNIF 1825.11 0.99 0 0.59

GKM++ 1823.57 1 0 0.59

Table 5 reports the best solution clustering data (minimal
𝑆𝐷𝑀 and corresponding values of 𝐴𝑅𝐼, 𝐶𝐼 and 𝑆𝐼) observed when
HWL-Sets is applied, with GKM++ seeding and 𝑅=20 repetitions,
to all the datasets of Table 1. The high quality of the clustering
solutions is confirmed by the high value of the 𝐴𝑅𝐼 index (not
less than 0.98) and the 𝐶𝐼 which was found always to be 0. The
Silhouette Index SI, in addition, closely mirrors the overlapping
degree among the clusters, paired with the number of clusters. For
a comparison with the results reported in [6], the values in Table 5
can be averaged respectively according to the number of clusters 𝐾
which varies in {4,8,16,32}, the vocabulary size 𝐿 which varies in
{100,200,400,800}, the percentage of overlapping degree 𝑜 which
varies in {0,5,10,20,40}, and, finally, the type of cluster unbalance 𝑡
which ranges in [1..5]. For practical reasons, only the average 𝐴𝑅𝐼
values, which reveal the clustering accuracy, are compared. Indeed,
in [6] the 𝐶𝐼 and the 𝑆𝐼 indexes were not computed. Moreover, the
Sum of Distances to Histogram 𝑆𝐷𝐻 is not directly comparable to
the 𝑆𝐷𝑀 values collected by HWK-Sets, because in [6] the adjusted
Cosine distance is used whereas, in this paper and in [10], local
histograms are not adopted and the modified Jaccard distance is
employed. Finally, only the results in [6] obtained with the high
precise and fast K-Swaps algorithm (applied with 300 iterations)
are used for comparison. Results are in the [Tables 6-9]. Last
column is the average 𝐴𝑅𝐼 of the values in the corresponding row.
As one can see from Tables 6-9, even with 𝑅=20 repetitions of HWK-

Sets, the accuracy is almost identical to that achieved with K-Swaps
in [6].

Table 5: Best solution found by HWK-Sets when applied
to all the datasets in Table 1 under GKM++ and R=20
repetitions.

Dataset ID SDM ARI CI SI

1 1513.47 0.99 0 0.71

2 7986.01 1.0 0 0.89

3 4826.97 0.99 0 0.79

4 1419.12 1.0 0 0.83

5 3124.19 0.99 0 0.68

6 3320.17 0.99 0 0.69

7 3433.50 0.99 0 0.7

8 4201.05 0.98 0 0.72

9 4925.60 0.99 0 0.72

10 3262.42 0.99 0 0.67

11 3472.06 0.99 0 0.64

12 3460.70 0.99 0 0.59

13 1823.57 1.0 0 0.59

14 6015.56 1.0 0 0.68

15 10284.89 0.99 0 0.66

Table 6: ARI vs. K.

Algorithm K=4 K=8 K=16 K=32 avgARI

HWK-Sets 1.0 0.99 0.99 1.0 1.0

K-Swaps 1.0 1.0 1.0 0.99 1.0

Table 7: ARI vs. L.

Algorithm L=100 L=200 L=400 L=800 avgARI

HWK-Sets 0.99 0.99 1.0 0.99 0.99

K-Swaps 0.99 1.0 0.99 0.99 0.99

Table 8: ARI vs. o.

Algorithm o=0% o=5% o=10% o=20% o=40% avgARI

HWK_Sets 1.0 0.99 0.99 0.99 0.99 0.99

K-Swaps 1.0 0.99 0.99 1.0 0.99 0.99

Table 9: ARI vs. t.

Algorithm t=1 t=2 t=3 t=4 t=5 avgARI

HWK-Sets 0.99 0.99 0.99 0.98 0.99 0.99

K-Swaps 1.0 0.99 0.99 1.0 0.99 0.99

Execution performance

HWK-Sets can be executed in parallel or sequential mode. This
is regulated by the PARALLEL parameter whose value 𝑡𝑟𝑢𝑒 enables
the use of parallel streams with fork/join [8,19]. It should be noted
that, in either execution mode, the algorithm executes exactly the
same operations as required by the Amdahl law. To figure out
the execution performance which parallel streams can provide to
HWK-Sets, the clustering algorithm with GKM++ seeding and 𝑅=20
repetitions, was applied 10 times to the dataset 13 in Table 1, and
the elapsed time in the parallel (PET) and the sequential mode

7

Open Acc Biostat Bioinform Copyright © Libero Nigro

OABB.MS.ID.000564. 3(3).2023

(SET) observed. Table 10 shows the measured times in sec. From
the values in the Table 10, the average SET (aSET) and average PET
(aPET) were derived to be: aSET=50.6, aPET=11.5, with a speedup
of:

50.6
4.4

11.5

aSET
speedup

aPET
= = =

Table 10: Parallel and Sequential Elapsed Time of 10
executions of HWK-Sets applied to dataset 13 of Table 1,
with GKM++ and R=20 repetitions (8 physical cores).

Execution SET sec PET sec

1 50.9 11.6

2 50.1 11.3

3 50.9 11.3

4 49.0 11.3

5 49.9 11.8

6 49.6 11.2

7 50.5 11.8

8 51.3 11.5

9 51.7 12.1

10 52.1 11.1

The speedup value mirrors the intrinsic sequential behavior
which exists in the Alg. 1. Parallelism is exploited in the medoids
update operations in the steps 4(b) and 4(d), by working, through
parallel streams, on the data objects of the two clusters involved
in the exchange operations of an object 𝑋 𝑖. On the other hand, the
size of the clusters is relatively small due to the benchmark datasets
which have only 1200 data objects.

Conclusions and Future Work
Clustering sets is difficult because objects are not points with a

given dimension of numerical coordinates, and the similarity can’t
be expressed by the usual Euclidean distance. In addition, the use
of a clustering algorithm like K-Means [1,2] faces the problem of
defining the mean of the data objects which populate a cluster. This
paper proposes HWK-Sets which extends the Hartigan & Wong’s
K-Means algorithm [13] for clustering sets [6]. HWK-Sets, similarly
to the work reported in [10], depends on a distance function among
sets which, in a case, modifies the Jaccard distance by taking into
account application-sensitive information as the global frequency
of use of the elementary items which compose the sets. Differently
from [6], HWK-Sets can exploit several stochastic seeding methods
and the quality of a clustering solution can be assessed by many
clustering indexes. The mean problem is tackled by establishing
the medoid [11,12] data object as the representative of each
cluster. Moreover, HWK-Sets has a natural parallel implementation
in Java based on streams [8,19,20] which improve the execution
performance. HWK-Sets was successfully applied to the 15
benchmark datasets used in [6,10], thus confirming, with few runs
and for each run with few iterations, the same accuracy of the
fastest K-Swaps algorithm described in [6]. The prosecution of the
work will address the following points. First, to integrate into HWK-
Sets an approach for the incremental evaluation, as in [26], of the
Silhouette Coefficients (SC) of data objects, so as to constrain the

exchange of a data object from a cluster to another to the condition
that the individual SC gets increased. The technique should improve
the identification of well-separated clusters. Second, to port the
implementation of HWK-Sets on top of the Parallel Theatre actors’
system [27] which favors a better exploitation of the computing
resources of a modern multi-core machines. Third, to apply HWK-
Sets to the clustering of pure categorical datasets.

References
1. Lloyd SP (1982) Least squares quantization in PCM. IEEE Transactions

on Information Theory 28(2): 129-137.

2. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern
Recognition Letters 31(8): 651-666.

3. Fränti P, Sieranoja S (2018) K-means properties on six clustering
benchmark datasets. Applied Intelligence 48(12): 4743-4759.

4. Fränti P, Sieranoja S (2019) How much can K-means be improved by
using better initialization and repeats? Pattern Recognition 93: 95-112.

5. Hautamäki V, Pöllänen A, Kinnunen T, Lee KA, Li H, et al. (2014) A
comparison of categorical attribute data clustering methods. Structural,
Syntactic, and Statistical Pattern Recognition: Joint IAPR International
Workshop, S+ SSPR Proceedings, Springer Joensuu, Finland, pp. 53-62.

6. Rezaei M, Fränti P (2023) K-sets and K-swaps algorithms for clustering
sets. Pattern Recognition 139: 109454.

7. Fränti P (2018) Efficiency of random swap clustering. Journal of Big Data
5(1): 1-29.

8. Nigro L, Cicirelli F, Fränti P (2023) Parallel random swap: A reliable and
efficient clustering algorithm in Java. Simulation Modelling Practice and
Theory 124: 102712.

9. (2023) Repository of datasets.

10. Nigro L, Fränti P (2023) Two medoid-based algorithms for clustering
Sets. Algorithms 16(7): 349.

11. Kaufman L, Rousseeuw PJ (1987) Clustering by means of medoids.
Statistical Data Analysis Based on the L1-Norm and Related Methods.

12. Park HS, Jun CH (2009) A simple and fast algorithm for K-medoids
clustering. Expert systems with applications 36(2): 3336-3341.

13. Slonim N, Aharoni E, Crammer K (2013) Hartigan’s K-means versus
Lloyd’s k-means-is it time for a change? In IJCAI, pp. 1677-1684.

14. Vouros A, Langdell S, Croucher M, Vasilaki E (2021) An empirical
comparison between stochastic and deterministic centroid initialization
for K-means variations. Machine Learning 110: 1975-2003.

15. Arthur D, Vassilvitskii S (2007) K-Means++: the advantages of careful
seeding. Proceedings of the ACM- SIAM Symposium on Discrete
Algorithms, pp. 1027-1035.

16. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient
initialization methods for the K-means clustering algorithm. Expert
systems with applications 40(1): 200-210.

17. Baldassi C (2020) Recombinator-k-means: A population-based algorithm
that exploits k-means++ for recombination. arXiv:1905.00531v3,
Artificial Intelligence Lab, Institute for Data Science and Analytics,
Bocconi University, via Sarfatti 25, 20135 Milan, Italy.

18. Baldassi C (2022) Recombinator-k-means: An evolutionary algorithm
that exploits k-means++ for recombination. IEEE Transactions on
Evolutionary Computation 26(5): 991-1003.

19. Urma RG, Fusco M, Mycroft A (2019) Modern Java in Action. Manning,
Shelter Island, New York, USA.

20. Nigro L (2022) Performance of parallel K-means algorithms in Java.
Algorithms 15(4): 117.

https://ieeexplore.ieee.org/document/1056489/authors
https://ieeexplore.ieee.org/document/1056489/authors
https://www.sciencedirect.com/science/article/abs/pii/S0167865509002323
https://www.sciencedirect.com/science/article/abs/pii/S0167865509002323
https://link.springer.com/article/10.1007/s10489-018-1238-7
https://link.springer.com/article/10.1007/s10489-018-1238-7
https://www.sciencedirect.com/science/article/pii/S0031320319301608
https://www.sciencedirect.com/science/article/pii/S0031320319301608
https://link.springer.com/chapter/10.1007/978-3-662-44415-3_6
https://link.springer.com/chapter/10.1007/978-3-662-44415-3_6
https://link.springer.com/chapter/10.1007/978-3-662-44415-3_6
https://link.springer.com/chapter/10.1007/978-3-662-44415-3_6
https://www.sciencedirect.com/science/article/pii/S0031320323001541
https://www.sciencedirect.com/science/article/pii/S0031320323001541
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-018-0122-y
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-018-0122-y
https://www.sciencedirect.com/science/article/abs/pii/S1569190X22001812
https://www.sciencedirect.com/science/article/abs/pii/S1569190X22001812
https://www.sciencedirect.com/science/article/abs/pii/S1569190X22001812
http://cs.uef.fi/sipu/datasets/
https://www.mdpi.com/1999-4893/16/7/349
https://www.mdpi.com/1999-4893/16/7/349
https://wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-clusteringbymedoids-l1norm-1987.pdf
https://wis.kuleuven.be/stat/robust/papers/publications-1987/kaufmanrousseeuw-clusteringbymedoids-l1norm-1987.pdf
https://www.sciencedirect.com/science/article/abs/pii/S095741740800081X
https://www.sciencedirect.com/science/article/abs/pii/S095741740800081X
https://www.ijcai.org/Proceedings/13/Papers/249.pdf
https://www.ijcai.org/Proceedings/13/Papers/249.pdf
https://link.springer.com/article/10.1007/s10994-021-06021-7
https://link.springer.com/article/10.1007/s10994-021-06021-7
https://link.springer.com/article/10.1007/s10994-021-06021-7
https://dl.acm.org/doi/10.5555/1283383.1283494
https://dl.acm.org/doi/10.5555/1283383.1283494
https://dl.acm.org/doi/10.5555/1283383.1283494
https://www.sciencedirect.com/science/article/abs/pii/S0957417412008767
https://www.sciencedirect.com/science/article/abs/pii/S0957417412008767
https://www.sciencedirect.com/science/article/abs/pii/S0957417412008767
https://arxiv.org/pdf/1905.00531.pdf
https://arxiv.org/pdf/1905.00531.pdf
https://arxiv.org/pdf/1905.00531.pdf
https://www.mdpi.com/1999-4893/15/4/117
https://www.mdpi.com/1999-4893/15/4/117

8

Open Acc Biostat Bioinform Copyright © Libero Nigro

OABB.MS.ID.000564. 3(3).2023

21. (2019) ICD-10 Version (https://icd.who.int/browse10/2019/en#/
XVIII).

22. Rezaei M, Fränti P (2016) Set matching measures for external cluster
validity. IEEE Transactions on Knowledge and Data Engineering 28(8):
2173-2186.

23. Fränti P, Rezaei M, Zhao Q (2014) Centroid index: cluster level similarity
measure. Pattern Recognition 47(9): 3034-3045.

24. Fränti P, Rezaei M (2016) Generalized centroid index to different
clustering models. Joint Int. Workshop on Structural, Syntactic, and
Statistical Pattern Recognition, 10029, LNCS, Merida, Mexico, pp. 285-
296.

25. Rousseeuw PJ (1987) Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis. Journal of Computational and Applied
Mathematics 20: 53-65.

26. Bagirov AM, Aliguliyev RM, Sultanova N (2023) Finding compact and
well separated clusters: Clustering using silhouette coefficients. Pattern
Recognition 135: 109144.

27. Nigro L (2021) Parallel theatre: an actor framework in Java for high
performance computing. Simulation Modelling Practice and Theory 106:
102189.

http://cs.joensuu.fi/~rezaei/tkde_Mohammad_Rezaei_withAppendix.pdf
http://cs.joensuu.fi/~rezaei/tkde_Mohammad_Rezaei_withAppendix.pdf
http://cs.joensuu.fi/~rezaei/tkde_Mohammad_Rezaei_withAppendix.pdf
https://www.sciencedirect.com/science/article/abs/pii/S0031320314001150
https://www.sciencedirect.com/science/article/abs/pii/S0031320314001150
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/abs/pii/S0031320322006239
https://www.sciencedirect.com/science/article/abs/pii/S0031320322006239
https://www.sciencedirect.com/science/article/abs/pii/S0031320322006239
https://www.sciencedirect.com/science/article/abs/pii/S1569190X20301283
https://www.sciencedirect.com/science/article/abs/pii/S1569190X20301283
https://www.sciencedirect.com/science/article/abs/pii/S1569190X20301283

	References

