Reduced Step Point Collocation Interpolation Method for the Solution of Heat Equation

Sunday Babuba*

Department of Mathematics, Federal University Dutse, Nigeria

*Corresponding author: Sunday Babuba, Department of Mathematics, Federal University Dutse, Jigawa, Nigeria.

Submission: April 4, 2018; Published: July 09, 2018

Abstract

In this study, we developed a new finite difference approximate method for solving heat equations. We study the numerical accuracy of the method. Detailed numerical results have shown that the method provides better results than the known explicit finite difference method. There is no semi-discretization involved and no reduction of PDE to a system of ODEs in the new approach, but rather a system of algebraic equations directly results.

Keywords: Lines; Multistep collocation; Parabolic; Taylor’s polynomial

Introduction

In this study, we will deal with a single parabolic partial differential equation in one space variable, where and are the time and space coordinates respectively, and the quantities and are the mesh sizes in the space and time directions. We consider, for \(0 \leq x \leq b, 0 \leq t \leq T\)

\[U(x,0) = f(x) \quad 0 \leq x \leq b, \]

\[U(0,t) = g_1(t) \quad t \geq 0, \]

\[U(b,t) = g_{p+1}(t) \quad t \geq 0.\]

We are interested in the development of numerical techniques for solving heat equations. Of recent, there is a growing interest concerning continuous numerical methods of solution for ODEs [1-3]. We are interested in the extension of a continuous method to solve the heat equation. This is done based on the collocation and interpolation of the PDE directly over multi steps along lines but without reduction to a system of ODEs. We intend to avoid the cost of solving a large system of coupled ODEs often arising from the reduction method by semi-discretization. The method also, eliminates the usual draw-back of stiffness arising in the conventional reduction method by semi-discretization [4,5].

The Solution Method

We subdivide the interval \(0 \leq x \leq b\) into \(N\) equal subintervals by the grid points \(x_n = mh, \quad n = 0, ..., N\) where \(Nh = b\). On these meshes we seek \(I = \text{step approximate solution to } U(x,t)\) of the form

\[U(x,t) = \sum_{r=0}^{s} a_r Q(x,t), \quad x \in [x_n, x_{n+1}], \quad t \in [t_{n+1}, t_{n+2}], \quad (2)\]

such that \(0 = x_0 < ... < x_n < ... < x_N = b\). The basis function \(Q_r(x,t) = 0, ..., P - 2\) are assumed known, \(a_r\) are constants to be determined and \(p \leq I + s\), where \(S\) is the number of collocation points. The equality holds if the number of interpolation points used is equal to \(I\). There will be flexibility in the choice of the basis function \(Q_r(x,t)\) as may be desired for specific application. For this work, we consider the Taylor’s polynomial \(Q_r(x,t) = x^r\). The interpolation values \(U_{x_n}, ..., U_{x_{n+s}}\) are assumed to have been determined from previous steps, while the method seeks to obtain \(U_{r_{n+p}}\) [1,2,6,7]. We apply the above interpolation conditions on eqn. (2) to obtain

\[a_0 Q_r(x_{n+p}, t) + ... + a_{r-1} Q_{r-1}(x_{n+p}, t) = \frac{\partial}{\partial t} U_{r_{n+p}} \quad g = \frac{1}{170} \left(\frac{1}{170} \right)^{\frac{509}{170}} (2.1)\]

We can write eqn. (2.1) as a simple matrix equation in the augmented form as,

\[
\begin{pmatrix}
Q(x_{n+p}) & ... & Q(x_{n+p})
\end{pmatrix}
\begin{pmatrix}
a_0 \\
... \\
a_{r-1}
\end{pmatrix}
= \begin{pmatrix}
U(x_{n+p}) \\
... \\
U(x_{n+p})
\end{pmatrix}
\quad (2.2)
\]

Using three interpolation points and one collocation point, implies that \(s = 1, p = 4, I = 3\) and \(r = 0,1,2\).

Substituting for \(p\) in eqn. (2.1) we have,

\[a_0 Q(x_{n+p}, t) + a_1 Q(x_{n+1}, t) + a_2 Q(x_{n+2}, t) = U_{r_{n+p}} \quad g = \frac{1}{170} \left(\frac{1}{170} \right)^{\frac{1}{170}} \quad (2.3)\]
Putting the values of G in eqn. (2.3) and writing it as matrix in augmented form

we have,

$$
\begin{bmatrix}
Q_{1}(x_{n,t}^2) & Q_{0}(x_{n,t}^2) & Q_{1}(x_{n+1,t}^2) \\
Q_{1}(x_{n,t}^2) & Q_{0}(x_{n,t}^2) & Q_{1}(x_{n+1,t}^2) \\
Q_{1}(x_{n+1,t}^2) & Q_{0}(x_{n+1,t}^2) & Q_{1}(x_{n+2,t}^2)
\end{bmatrix}
\begin{bmatrix}
a_{0} \\
a_{1} \\
a_{2}
\end{bmatrix}
= \begin{bmatrix}
U(x_{n+1},t_{n}) \\
U(x_{n},t_{n}) \\
U(x_{n+1},t_{n})
\end{bmatrix}
= \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\begin{bmatrix}
U_{1} \\
U_{2} \\
U_{3}
\end{bmatrix}
$$

(2.4)

From eqn. (2.4) we obtain the following values

$$
Q_{1}(x_{n,t}^2) = -x_{n,t}^2, \\
Q_{0}(x_{n,t}^2) = x_{n,t}^2, \\
Q_{1}(x_{n+1,t}^2) = -x_{n+1,t}^2.
$$

Putting the above values in eqn. (2.4) becomes

$$
\begin{bmatrix}
1 & 1 & 1 \\
-x_{n,t}^2 & x_{n,t}^2 + x_{n+1,t}^2 & -x_{n+1,t}^2 \\
-x_{n,t}^2 & x_{n,t}^2 + x_{n+1,t}^2 & -x_{n+1,t}^2
\end{bmatrix}
\begin{bmatrix}
a_{0} \\
a_{1} \\
a_{2}
\end{bmatrix}
= \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}
\begin{bmatrix}
U_{1} \\
U_{2} \\
U_{3}
\end{bmatrix}
$$

(2.5)

When we solve eqn. (2.5) to obtain the value of a_{2} to be

$$
a_{2} = \frac{14450U_{0} - 14450U_{1} + 28900U_{2}}{128000}.
$$

We substitute $r = 0,1,2$ in eqn. (2.0) to obtain

$$
U(x,t) = a_{0}Q_{0} + a_{1}Q_{1} + a_{2}Q_{2}(2.6)
$$

By substitution of Q_{0}, Q_{1} and Q_{2} in eqn. (2.6) we obtain

$$
U(x,t) = a_{0} + a_{1}x + a_{2}x^{2}t^{2}(2.7)
$$

Substituting the value of a_{2} in eqn. (2.7) we obtain

$$
U(x,t) = a_{0} + a_{1}x + a_{2}x^{2}t^{2}(2.7)
$$

$$
\frac{14450U_{0} - 14450U_{1} + 28900U_{2}}{128000}.
$$

(2.8)

Taken the first and second derivatives of eqn. (2.8) with respect to x we have

$$
U(x,t) = \frac{28900}{170} - \frac{28900}{170}t^{2}.
$$

(2.9)

We collocate eqn. (2.9) at $t = t_{n}$ to arrive at

$$
U(x,t) = \frac{28900}{170} - \frac{28900}{170}t^{2}.
$$

(2.10)

Solving eqn. (2.16) for value of a_{1} we obtain

$$
a_{1} = \frac{128U_{m,n} - 128U_{n,m}}{k}
$$

(2.17)

When we substitute $r = 0,1$ into eqn. (2.11), we obtain

$$
U(x,t) = a_{0}Q_{0} + a_{1}Q_{1}.
$$

(2.17)

By substituting the values of a_{1}, Q_{0}, Q_{1} in equation (2.17) we have

$$
U(x,t) = \frac{128U_{m,n} - 128U_{n,m}}{k}.
$$

(2.18)

Taken the first derivatives of equation (2.18) with respect to t we obtain

$$
U(x,t) = \frac{128U_{m,n} - 128U_{n,m}}{k}.
$$

(2.19)
We collocate eqn. (2.19) at \(X = X_m \) yields

\[
U_{(x,t)} \approx \frac{1}{128} \left(\frac{U_{x=0}}{k} - \frac{U_{x=+}}{k} \right)
\]

But from eqn. (1.0) we find that eqn. (2.20) is equal to eqn. (2.10), which implies that

\[
U_{x=+} = (1 - 256r)U_{x=-} + 128 \left(\frac{U_{x=+} - U_{x=-}}{k} \right).
\]

Manipulating mathematically and putting \(r = \frac{k}{h} \), we obtain

Eqn. (2.21) is a new scheme for solving the heat equation.

To illustrate this method, we use it to solve problems (3.1) and (3.2) respectively.

1.1. Advantages of the method

A. We intend to avoid the cost of solving a large system of coupled ODEs often arising from the reduction methods.

B. We also intend to eliminate the usual draw-back of stiffness arising in the conventional reduction method by semi-discretization.

Specific Problem

Example

Use the scheme to approximate the solution to the heat equation (Table 1)

\[
\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial x^2} = 0, \quad 0 < x < 1 \quad 0 < t
\]

\[
U(0,t) = U(1,t) = 0, \quad t > 0
\]

\[
U(x,0) = \sin \pi x, \quad 0 \leq x \leq 1
\]

Table 1: Result of action of Eqn. (2.21) on problem 3.1.

<table>
<thead>
<tr>
<th>(x)</th>
<th>New Method (U(x,t))</th>
<th>Schmidt Method (U(x,t))</th>
<th>Exact Solution (U(x,t))</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Method</td>
<td>Schmidt Method</td>
<td>Exact Solution</td>
<td>Errors</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.308928027</td>
<td>0.308928287</td>
<td>0.308927305</td>
<td>7.2213XE-7, 9.8292XE-7</td>
</tr>
<tr>
<td>0.2</td>
<td>0.587645438</td>
<td>0.587616523</td>
<td>0.58761453</td>
<td>3.0785XE-6, 1.8700XE-6</td>
</tr>
<tr>
<td>0.3</td>
<td>0.808784075</td>
<td>0.808784758</td>
<td>0.808782185</td>
<td>1.8904XE-6, 2.5735XE-6</td>
</tr>
<tr>
<td>0.4</td>
<td>0.950782703</td>
<td>0.950783506</td>
<td>0.950780481</td>
<td>2.2227XE-6, 3.0257XE-6</td>
</tr>
<tr>
<td>0.5</td>
<td>0.997712097</td>
<td>0.997712941</td>
<td>0.997709759</td>
<td>2.3381XE-6, 3.1821XE-6</td>
</tr>
<tr>
<td>0.6</td>
<td>0.950782703</td>
<td>0.950783506</td>
<td>0.950780481</td>
<td>2.2227XE-6, 3.0257XE-6</td>
</tr>
<tr>
<td>0.7</td>
<td>0.808784075</td>
<td>0.808784758</td>
<td>0.808782185</td>
<td>1.8904XE-6, 2.5735XE-6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.587645438</td>
<td>0.587616523</td>
<td>0.58761453</td>
<td>3.0785XE-6, 1.8700XE-6</td>
</tr>
<tr>
<td>0.9</td>
<td>0.308928027</td>
<td>0.308928287</td>
<td>0.308927305</td>
<td>7.2213XE-7, 9.8292XE-7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

Table 2: Result of action of Eqn. (2.21) on problem 3.2.

<table>
<thead>
<tr>
<th>(x)</th>
<th>New Method (U(x,t))</th>
<th>Schmidt Method (U(x,t))</th>
<th>Exact Solution (U(x,t))</th>
<th>Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New Method</td>
<td>Schmidt Method</td>
<td>Exact Solution</td>
<td>Errors</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.398928026</td>
<td>0.398928287</td>
<td>0.398927305</td>
<td>7.2153XE-7, 9.8298XE-7</td>
</tr>
<tr>
<td>0.2</td>
<td>0.747616026</td>
<td>0.747616522</td>
<td>0.747614653</td>
<td>1.3735XE-6, 1.8699XE-6</td>
</tr>
<tr>
<td>0.3</td>
<td>1.018784076</td>
<td>1.018784758</td>
<td>1.018782185</td>
<td>1.8905XE-6, 2.5734XE-6</td>
</tr>
<tr>
<td>0.4</td>
<td>1.190782704</td>
<td>1.190783507</td>
<td>1.191332631</td>
<td>5.4993XE-4, 5.4912XE-4</td>
</tr>
<tr>
<td>0.5</td>
<td>1.249712098</td>
<td>1.249712941</td>
<td>1.24970976</td>
<td>2.3375XE-6, 3.1810XE-6</td>
</tr>
<tr>
<td>0.6</td>
<td>1.190782704</td>
<td>1.190783507</td>
<td>1.191332631</td>
<td>5.4993XE-4, 5.4912XE-4</td>
</tr>
<tr>
<td>0.7</td>
<td>1.018784076</td>
<td>1.018784758</td>
<td>1.018782185</td>
<td>1.8905XE-6, 2.5734XE-6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.747616026</td>
<td>0.747616522</td>
<td>0.747614653</td>
<td>1.3735XE-6, 1.8699XE-6</td>
</tr>
</tbody>
</table>
Use the scheme to approximate the solution to the heat equation (Table 2)

\[
\frac{\partial U}{\partial t} - \frac{\partial^2 U}{\partial x^2} = 2, \quad 0 < t
\]

\[
U(0,t) = U(1,t) = 0, \quad t > 0
\]

\[
U(x,0) = \sin \pi x + (1-x), \quad 0 \leq x \leq 1, t = 0
\]

Conclusion

A continuous interpolant is proposed for solving parabolic partial differential equation in one space variable without discretization. To check the numerical method, it is applied to solve two different test problems with known exact solutions. The numerical results confirm the validity of the new numerical scheme and suggested that it is an interesting and viable numerical method which does not involve the reduction of PDE to a system of ODEs.

References