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Abstract 


In this study, we developed a new finite difference approximate method for solving heat equations. We study the numerical accuracy of the method.
Detailed numerical results have shown that the method provides better results than the known explicit finite difference method. There is no semidiscretization
involved and no reduction of PDE to a system of ODEs in the new approach, but rather a system of algebraic equations directly results. 

Keywords: Lines; Multistep collocation; Parabolic; Taylor's polynomial











Introduction 


In this study, we will deal with a single parabolic partial differential
equation in one space variable, where and are the time and
space coordinates respectively, and the quantities and are the mesh
sizes in the space and time directions. we consider, [image: ],0≤x≤b,0≤t≤T........[1]


Subject to the initial and boundary conditions


[image: ]


We are interested in the development of numerical techniques
for solving heat equations. Of recent, there is a growing interest
concerning continuous numerical methods of solution for ODEs [1-3]. We are interested in the extension of a continuous method to
solve the heat equation. This is done based on the collocation and
interpolation of the PDE directly over multi steps along lines but
without reduction to a system of ODEs. We intend to avoid the cost
of solving a large system of coupled ODEs often arising from the
reduction method by semi-discretization. The method also, eliminates
the usual draw-back of stiffness arising in the conventional
reduction method by semi-discretization [4,5].


The Solution Method


We subdivide the interval 0≤x≤b into N equal subintervals
by the grid points xm=mh, m=0,....,N where Nh=b..On these
meshes we seek l - step approximate solution to U(x,t) of the
form


[image: ]


such that 0=x0 <...<xm <...<xN =b. The basis function
Q (x,t), r = 0,..., p - 2  are assumed known, ar are constants to
be determinedand p≤l+s,  where s is the number of collocation
points. The equality holds if the number of interpolation points
used is equal to l . There will be flexibility in the choice of the basis
function Q r (x t) , as may be desired for specific application. For
this work, we consider the Taylor's polynomial Qr(x,t)xτ,tτ. The interpolation
values Um,n,,...,Um+l-l,n are assumed to have been determined
from previous steps, while the method seeks to obtain 
Um+l,n [1,2,6,7]. We apply the above interpolation conditions on eqn. (2)
to obtain 



[image: ]


We can write eqn. (2.1) as a simple matrix equation in the augmented
form as,


[image: ]


Using three interpolation points and one collocation point, implies
that s=1, p = 4, l = 3 and r = 0,1,2.


Substituting for p in eqn. (2.1) we have, 


[image: ]


Putting the values of g in eqn. (2.3) and writing it as matrix in
augmented form 


we have,


[image: ]



From eqn. (2.4) we obtain the following values

[image: ]



Putting the above values in eqn. (2.4) becomes


[image: ]



When we solve eqn. (2.5) to obtain the value of a2 to be

[image: ]


We substitute r = 0,1,2 in eqn. (2.0) to obtain

[image: ]

By substitution of  Q0 Q1 Q2 and in eqn. (2.6) we obtain

[image: ]

Substituting the value of a2 in eqn. (2.7) we obtain 

[image: ]

Taken the first and second derivatives of eqn. (2.8) with respect
to we have

[image: ]

we collocate eqn. (2.9) at t = tn to arrive at 

[image: ]

Similarly, we reverse the roles of x and t in eqn. (2.0), and we
also subdivide the interval 0≤t≤T into y equal subintervals by the
grid points tn=nk, n=0,...,y where yk=T.  On these meshes we seek
l - step approximate solution to U(x,t) of the form 

[image: ]

Such that 0=t0 <...<tn<...< ty=T,  the basis function Qr (x,t) r = 0,..., p - 2
are assumed known, ar are constants to be determined and p≤l+s, where s is the number of collocation points. The equality holds
if the number of interpolation points used is equal to l . There
will be flexibility in the choice of the basis function Qr (x t) , as may
be desired for specific application. For this method, we consider the Taylor's polynomial Qr(x,t)=xrtr. The interpolation values  Um,n,,...,Um,n+l-1 are assumed to have been determined from previous
steps, while the method seeks to obtain Um,n+l [see (4)]. We
apply the above interpolation conditions on eqn. (2.11) to obtain 


[image: ]

We can write (2.12) as a simple matrix equation in the augmented
form

[image: ]

Using two interpolation points and one collocation point in eqn.
(2.13) implies that 


p = 3,r = 0,1 l = 2 and
 f =0,1/170 , and by substitution eqn.
(2.13) becomes

[image: ]

From eqn. (2.14) we obtain the following values:

[image: ]


Substituting the values of eqn. (2.15) into eqn. (2.14), we have
this matrix below

[image: ]
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When we substitute r = 0,1, into eqn. (2.11), we obtain 

[image: ]


By substituting the values of  a1 ,Q0 ,Q1 in equation (2.17) we
have

[image: ]

Taken the first derivatives of equation (2.18) with respect to t
we obtain

[image: ]

We collocate eqn. (2.19) at  x = xm yields

[image: ]

But from eqn. (1.0) we find that eqn. (2.20) is equal to eqn.
(2.10), which implies that

[image: ]


manipulating mathematically and putting [image: ] we obtain
Eqn. (2.21) is a new scheme for solving the heat equation.


To illustrate this method, we use it to solve problems (3.1) and
(3.2) respectively.


1.1. Advantages of the method


A. We intend to avoid the cost of solving a large system of
coupled ODEs often arising from the reduction methods.


B. We also intend to eliminate the usual draw-back of stiffness
arising in the conventional reduction method by semi-discretization.


Specific Problem

Example

Use the scheme to approximate the solution to the heat equation
(Table 1)

[image: ]



Table 1: 
Result of action of Eqn. (2.21) on problem 3.1.

[image: ]



Example



Table 2: 
Result of action of Eqn. (2.21) on problem 3.2.
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Use the scheme to approximate the solution to the heat equation
(Table 2)

[image: ]

Conclusion


A continuous inter-polant is proposed for solving parabolic
partial differential equation in one space variable without
discretization. To check the numerical method, it is applied to
solve two different test problems with known exact solutions. The
numerical results confirm the validity of the new numerical scheme
and suggested that it is an interesting and viable numerical method
which does not involve the reduction of PDE to a system of PDE to
a system of ODEs.
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