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Abstract 

Based on the Kumaraswamy distribution, we study the so called Kumaraswamy Extension Exponential Distribution (KEE). The new distribution 
has a number of well-known lifetime special sub-models such as a new exponential type distribution, extension exponential distribution Kumaraswamy 
generalized  exponential  distribution,  among  several  others.  We  derive  some  mathematical  properties  of  the  (KEE)  including  quan  tile  function,  
moments, moment generating function and mean residual lifetime. In addition, the method of maximum likelihood and least squares and weighted least 
squares estimators are discussing for estimating the model parameters. By using the likelihood method a simulation study was made.

Keywords:   Kumaraswamy distribution; Extension exponential distribution hazard function; Mean residual lifetime; Maximum likelihood estimation; 
Moments 



Introduction and Motivation

In   many   applied   sciences   such   as   medicine,   engineering   
and finance, amongst  others, modelling  and analyzing lifetime 
data  are  crucial.  Several  lifetime  distributions  have  been  used  to  
model  such  kinds  of  data.  For  instance,  the  exponential,  Wei  bull,  
gamma,   Rayleigh   distributions   and   their   generalizations [1,2].   
Each distribution has its own characteristics due specifically to the 
shape of the failure rate function which may be only monotonically 
decreasing  or  increasing  or  constant  in  its  behavior,  as  well  as  
non-monotone,   being   bathtub   shaped   or   even   uni-modal.   The   
Exponential  distribution  is  the  most  widely  applied  statistical  
distribution in several fields. One of the reasons for its importance 
is   that   the   exponential   distribution   has   constant   failure   rate   
function. Additionally, this model was the first lifetime model for 
which  statistical  methods  were  extensively  developed  in  the  lite  
testing literature. Here, it is worthwhile to quote Marshall & Olkin 
[3]. The most important one parameter family of life distributions 
is the family of exponential distributions. This importance is partly 
due  to  the  fact  that  several  of  the  most  commonly  used  families  
of  life  distributions  are  two  or  three  parameter  extensions  of  the  
exponential  distributions”.  The  cumulative  function  of  a  random  
variable X with exponential distribution is, x>0 where λ>0 is the 
scale  parameter.  The  probability  density  function  and  survival  
function  of  X  are [image: ],  and  [image: ],  respectively.  
Additionally,  the  moments,  the  moment  generating  function  and  
several  other  properties  of  this  distribution  can  be  expressed  in  
terms of elementary functions [3-5].


The  cumulative  distribution  function [image: ] ,  for  [image: ]
(with  θ>0,λ>0  and  β>0), was used during the first 
half  of  the  nineteenth  century  by  Gompertz  [6]  and  Verhulst  [7-
9]  to  compare  known  human  mortality  tables  and  to  represent  
population  growth,  respectively.  Ahuja  &  Nash  [10]  also  used  
this  model  and  some  related  models  for  growth  curve  mortality.  
The   Exponentiated   Exponential   (EE)   distribution   (also   known   
as  the  generalized  exponential  distribution)  discussed  in  Gupta  
[1],  is  defined  as  a  particular  case  of  the  Gompertz-Verhulst 
distribution function when θ=1, that is, the cumulative distribution 
function  of  the  EE  distribution  becomes  [image: ].  The  
Exponentiated Exponential distribution is also a special case of the 
three-parameter exponentiated Wei bull distribution, Mudholkar & 
Srivastava  [11].  Note  that  if  β=1, then the EE distribution reduces 
to the exponential distribution with probability density and failure 
rate functions:

[image: ]

and

[image: ]


Respectively, We notice that the failure rate function of the EE 
distribution can be increasing (for β>1) or decreasing (for β<1). If β=1, the failure rate function becomes constant. Pointed out that the 
failure rate function of the EE distribution behaves like the failure rate  function  of  the  gamma  distribution,  and  it  can  be  used  as  an  
alternative  distribution  to  the  gamma  and  Wei  bull  distributions  
in  many  situations.  Additionally,  these  authors  derived  several  
mathematical  properties  of  this  distribution.  The  EE  distribution  
has  been  the  subject  of  some  research  papers  and  has  received  
widespread  attention  in  the  last  few  years.  We  refer  the  reader  to  
Zheng [12], Gupta & Kundu [13-15], Kundu & Gupta [16], Pradhan 
&  Kundu  [17],  Abdel-Hamid  &  Al-Hussaini  [18],  Aslam  et  al.  [19]  
and  Nadarajah  [20],  among  many  others.  Nadarajah  &  Haghighi  
[21] introduced a new extension of the exponential distribution as 
an alternative to the gamma, Wei bull and the EE distributions. The 
cumulative distribution function of NH distribution is given


[image: ]


where  λ>0  is  the  scale  parameter  and α>0   is   the   shape   
parameter. The corresponding probability density and failure rate 
functions are given by


[image: ]

and

[image: ]

Note that equation (2) has two parameters just like the gamma, 
Wei  bull  and  the  EE  distributions.  Note  also  that  equation  (2)  
has  closed  for  survival  function  and  hazard  rate  functions  just  
like  the  Wei  bull  and  the  EE  distributions.  For  α=1, (2) reduces 
to  the  exponential  distribution.    As  we  shall  see  later,  (2)  has  the  
attractive feature of always having the zero mode and yet allowing 
for  increasing,  decreasing  and  constant  hazard  rate  function  [20].  
Also  Nadarajah  &  Haghighi  [21]  presented  some  motivations  for  
introducing their new distribution. 

The first motivation is based on the relationship between the 
probability density function in (2) and its failure rate function. The 
NH  density  function  can  be  monotonically  decreasing  and  yet  its  
failure  rate  function  can  be  increasing.  The  gamma,  Wei  bull  and  
EE  distributions  do  not  allow  for  an  increasing  failure  function  
when their respective densities are monotonically decreasing. The 
second  motivation  is  related  with  the  ability  (or  the  inability)  of  
the NH distribution to model data that have their mode fixed at 
zero.  The  gamma,  Wei  bull  and  EE  distributions  are  not  suitable  
for  situations  of  this  kind.  The  third  motivation  is  based  on  the  
following  mathematical  relationship:  if  Y  is  a  Wei  bull  random  
variable with shape parameter a and scale parameter λ,  then  the  
density in Eq. (1.2) is the same as that of the random variable Z=Y-1 
truncated  at  zero;  that  is,  the  NH  distribution  can  be  interpreted  
as  a  truncated  Wei  bull  distribution.  For  further  details  about  this  
new model as well as general properties, the reader is referred to 
Nadarajah & Haghighi [21].

The   distribution   introduced   by   Kumaraswamy   [22],   also   
referred  to  as  the  “minimax”  distribution,  is  not  very  common  
among  statisticians  and  has  been  little  explored  in  the  literature,  
nor  its  relative  inter  changeability  with  the  beta  distribution  has  
been  widely  appreciated.  We  use  the  term  Kw  distribution  to  denote  the  Kumaraswamy  distribution.  The  Kumaraswamy  (Kw)  
distribution is not very common among statisticians and has been 
little explored in the literature. Its Cumulative Distribution Function 
(cdf ) is given by

[image: ]


where   a>0   and   b>0   are   shape   parameters.   Equation   (4)   
compares  extremely  favourably  in  terms  of  simplicity  with  the  
beta  cdf  which  is  given  by  the  incomplete  beta  function  ratio.  The  
corresponding Probability Density Function (pdf ) is


[image: ]


The  Kw  pdf  has  the  same  basic  shape  properties  of  the  beta  
distribution:  a>1  and  b>1  (uni-modal);  a<1    and    b<1(uni-anti  
model);  a>1 and b=1(increasing); a=1 and b>1(decreasing); a=1 and 
b=1(constant). It does not seem to be very familiar to statisticians 
and has not been investigated systematically in much detail before, 
nor  has  its  relative  inter  changeability  with  the  beta  distribution  
been  widely  appreciated.  However,  in  a  very  re-  cent  paper,  Jones  
[23] explored the background and genesis of this distribution and, 
more  importantly,  made  clear  some  similarities  and  differences  
between   the   beta   and   Kw   distributions.   However,   the   beta   
distribution has the following advantages over the Kw distribution: 
simpler  formulae  for  moments  and  Moment  Generating  Function  
(mgf ),  a  one-parameter  sub-family  of  symmetric  distributions,  
simpler  moment  estimation  and  more  ways  of  generating  the  
distribution by means of physical processes.

In  this  note,  we  combine  the  works  of  Kumaraswamy  [22]  
to  derive  some  mathematical  properties  of  a  new  model,  called  
the  Kw-G  distribution,  which  stems  from  the  following  general  
construction:  if  tt  denotes  the  baseline  cumulative  function  of  a  
random  variable,  then  a  generalized  class  of  distributions  can  be  
defined by

[image: ]


Where  a>0  and  b>0  are  two  additional  shape  parameters  
which  aim  to  govern  skewness  and  tail  weight  of  the  generated  
distribution.  An  attractive  feature  of  this  distribution  is  that  the  
two parameters a and b can afford greater control over the weights 
in  both  tails  and  in  its  centre.    The  Kw-G  distribution  can  be  used  
quite  effectively  even  if  the  data  are  censored.  The  corresponding  
probability density function (pdf ) is


[image: ]


 The density family (7) has many of the same properties of the 
class of beta-tt distributions [24], but has some advantages in terms 
of  tractability,  since  it  does  not  involve  any  special  function  such  
as the beta function. Equivalently, as occurs with the beta-G family 
of  distributions,  special  Kw-G  distributions  can  be  generated  as  
follows: the Kw-Wei bull [25]. General results for the Kumaraswamy 
distribution  [26].  Kw-  Ggeneralized  gamma  [27],  Kw
-G  Birnbaum-Saunders  [28]  and  Kw  Gumbel  [29]  distributions  are  obtained  
by  taking  G(x)  to  be  the  cdf  of  the  Wei  bull,  generalized  gamma,  
Birnbaum-Saunders and Gumbel distributions, respectively, among several others. Hence, each new Kw
-G distribution can be generated from a specified tt distribution.

A  physical  interpretation  of  the  Kw-G  distribution  given  by  (6)  
and (7) (for a and b positive integers) is as follows. Suppose a system 
is  made  of  b  independent  components  and  that  each  component  
is made up of a independent subcomponents. Suppose the system 
fails if any of the b components fails and that each component fails if 
all of the subcomponents fail. Let Xj1,Xj2,...,Xja denote the life times of 
the subcomponents within the jth component, j=1,...,b with common 
(cdf ) G. Let Xj denote the lifetime of the jth component, j=1,...,b and 
let X denote the lifetime of the entire system. Then the (cdf ) of X is 
given by



[image: ]

[image: ]

[image: ]

[image: ]

So, it follows that the Kw- G distribution given by (6) and (7) is 
precisely the time to failure distribution of the entire system. Now 
we  propose  the  Kumaraswamy  extension  Exponential  (denoted  
with the prefix KEE).

The rest of the article is organized as follows. In Section 2, we 
define the Kumaraswamy extension Exponential distribution, the 
expansion  for  the  cumulative  and  density  functions  of  the  KEE  
distribution  and  some  special  cases.  Quantile  function,  median,  
moments, moment generating functions and mean residual lifetime 
are discussed in Section 3. Least squares and weighted least squares 
estimators  introduced  in  Section  4.  Finally,  maximum  likelihood  
estimation is performed in Section 5.

Kumaraswamy Extension Exponential Distribution


In   this   section   we   studied   the   Kumaraswamy   Extension   
Exponential   (KEE)   distribution   and   the   sub-models   of   this   
distribution.  Now  using  (1)  and  (2)  in  (6)  we  have  the  cdf  of  
Kumaraswamy extension Exponential distribution

[image: ]

  The  KEE  variate  X  following  (8)  is  denoted  by  X~KEE(φ),φ=(a,b,α,λ).  The  corresponding  probability  density  function  (pdf )  
of (8) is given by

[image: ]


 The associated survival, hazard rate and reversed hazard rate 
functions can be written as

[image: ]

and

[image: ]

[image: ]

Special cases of the KEE distribution

The  Kumaraswamy  extension  Exponential  (KEE)  distribution  
is very flexible model that approaches to different distributions 
when  its  parameters  are  changed.  In  addition  to  some  standard  
distribution  the  (KEE)  distribution  includes  the  following  well  
known distribution as special models. If X is a random variable with 
cdf (8) or pdf (9) then we have the following cases

1.For b=1, then (8) reduces to A new exponential-type 
distribution which is introduced by Lemonte [30].

2.Applying a=b=1, we can obtain the extension Exponential 
distribution which is introduced by Nadarajah & Haghighi [21].

3.Kumaraswamy    generalized    Exponential    distribution    
arises as a special case of KEE by taking α=1.

4.If  α=1  then  (8)  gives  Kumaraswamy  exponential 
distribution [25].

5.For b=α=1 we get the generalized Exponential distribution 
which is introduced by Gupta & Kundu [1].

6.Applying  a=b=α=1  we  can  obtain  the  exponential 
distribution [25].

Expansion for the cumulative and density functions

In  this  subsection  we  present  some  representations  of  cdf,  
pdf   of   Kumaraswamy   extension   Ex-ponential   distribution.   The   
mathematical relation given below will be useful in this subsection.

By using the generalized binomial theorem if 
β is a positive and |z|<1, then

[image: ]

First, note that [image: ] for x > 0. Using (13) we get

[image: ]

also using the power series of (13) the equation (9) becomes

[image: ]

[image: ]

Again apply (13) in the last term of (15), we obtain

[image: ]

[image: ]

[image: ]

Statistical Properties

In this section we studied the statistical properties of the (KEE) 
distribution, specifically quan- tile function, moments, incomplete 
moment and moment generating function.

Quantile and median

Quantile  functions  are  used  in  theoretical  aspects,  statistical  
applications  and  Monte  Carlo  methods.  Monte-Carlo  simulations  
employ quantile functions to produce simulated random variables 
for  classical  and  new  continuous  distributions.  The  inverse  of  the  
cdf (3) yields a very simple quantile function, say Q(u), of X is given 
by

[image: ]

A sample from the KEE distribution may be obtained by applying 
its  quantile  function  to  a  sample  from  a  uniform  distribution.  
Further, we can obtain the median, quantiles 25 and 75 by replacing 
0.5, 0.25 and 0.75 in equation (17), respectively. The shortcomings 
of  the  classical  kurtosis  measure  are  well-known.  There  are  many  
heavy-tailed distributions for which this measure is infinite, so it 
becomes uninformative precisely when it needs to be. Indeed, our 
motivation to use quantile-based measures stemmed from the non-
existence  of  classical  kurtosis  for  many  distributions.  The  effect  
of  the  shape  parameters  a  and  b  on  the  skewness  and  kurtosis  
of the KEE distribution can be based on quantile measures. One 
of  the  earliest  skewness  measures  to  be  suggested  is  the  Bowley  
skewness, defined by

[image: ]

On the other hand , the Moors kurtosis (see Moors (1988)) 
based on cotiles is given by

[image: ]

where  Q(•)  represents  the  quantile  function.  The  measures  
SK  and  KU  are  less  sensitive  to  outliers  and  they  exist  even  
for   distributions   without   moments.   For   symmetric   uni-modal   
distributions, positive kurtosis indicates heavy tails and peakedness 
relative   to   the   normal   distribution,   whereas   negative   kurtosis   
indicates  light  tails  and  flatness.  For  the  normal  distribution, 
SK=KU=0.

The moments

Many   of   the   interesting   characteristics   and   features   of   a   
distribution can be studied through its moments. In this subsection, 
we derive the rth moments and moment generating function MX(t) of 
the KEE(ϕ) where ϕ=(a,b,α,λ). Let X be a random variable following 
the  KEE  distribution  with  parameters  a,b,α  and  λ.  Expressions  for  
mathematical  expectation,  variance  and  the  rth  moment  on  the  
origin of X can be obtained using the well-known formula.

a)Lemma  1:  If  X  has  KEE(ϕ),  then  the  rth  moment  of  X,  
r=1,2,.... has the following form:

[image: ]

Proof

Let  X  be  a  random  variable  with  density  function  (15).  The  rthordinary moment of the

KEE distribution is given by

[image: ]

[image: ]

[image: ]


Using Lemma 3 in the Appendix, we get,

[image: ]

Which completes the proof

The central moments μr and cumulants Kr of the KEE distribution 
can be determined from expression (18) as

[image: ]

And

[image: ]

Respectively,where[image: ], [image: ], etc.  Additionally,  the  
skewness and kurtosis can be calculated from the third and fourth 
standardized  cumulants  in  the  forms [image: ]  and [image: ]respectively.

b)Lemma  2:  If  X  has  KEE(ϕ),  then  the  moment  generating  
function MX(t) has the following

form

[image: ]

Proof

We  start  with  the  well  known  definition  of  the  moment 
generating function given by

[image: ]

Since,[image: ] converges and each term is integrable for all t 
close to 0, then we can rewrite the moment generating function as [image: ] by replacing E(Xr)
. Hence using (18) the MGF of KEE distribution is given by

[image: ]

which completes the proof

Similar,  the    characteristic    function    of    the    KEE    distribution    
becomes  ϕX(t) = MX(it)

where i = is the unit imaginary number.

Mean residual lifetime


Given that a component survives up to time t=0, the residual life 
is the period beyond t until the time of failure and defined by the 
conditional random variable X-t|X>t. In reliability, it is well known 
that  the  mean  residual  life  function  and  ratio  of  two  consecutive  
moments of residual life determine the distribution uniquely [31]. 
Therefore,  we  obtain  the  rth-order  moment  of  the  residual  life  via  
the general formula


[image: ]

Applying the binomial expansion of (x-t)r, substituting (9) and 
(10) into the above formula gives

[image: ]

[image: ]

Using Lemma 4 in the Appendix, we get

[image: ]

m=0 s=0

where [image: ] is   the   upper   incomplete   gamma function.

For lifetime models, it is also of interest to know what E(Xr/X>t)is, Using Lemma 4

in the appendix, it is easily seen that

[image: ]

[image: ]

[image: ]

Where

[image: ]

The mean residual lifetime function is given by

[image: ]

[image: ]

Least Squares and Weighted Least Squares Estimators

In   this   section   we   provide   the   regression   based   method   
estimators   of   the   unknown   parameters   of   the   Kumaraswamy   
extension exponential distribution, which was originally suggested 
by Swain et al. [32] to estimate the parameters of beta distributions. 
It can be used some other cases also. Suppose Y1,....,Yn is a random 
sample of size n from a distribution function G(.) and suppose Y(i); 
i=1, 2, . . . , n denotes the ordered sample. The proposed method uses the distribution of G(Y(i)). For a sample of size n, we have

[image: ]

And 

[image: ]


see Johnson et al. [4]. Using the expectations and the variances, 
two variants of the least squares methods can be used.

Method 1

(Least Squares Estimators) Obtain the estimators by minimizing

[image: ]


 with respect to the unknown parameters. Therefore in case of 
KEE distribution the least squares estimators of a,b,α, and λ say âLSE,[image: ] 
 respectively, can be obtained by minimizing

[image: ]

with respect to a, b, α, and λ.

Method 2

(Weighted   Least   Squares   Estimators)   The   weighted   least   
squares estimators can be obtained by minimizing

[image: ]

with respect to the unknown parameters, where

[image: ]

Therefore,   in   case   of   KEE   distribution   the   weighted   least   
squares estimators of a, b,α,and λ, say

[image: ]respectively,  can  be  obtained  by  
minimizing

[image: ]


With respect to the unknown parameters only.

Estimation and Inference

In this section, we derive the maximum likelihood estimates of 
the unknown parameters ϕ=(a,b,α,λ) of KEE distribution based on 
a  complete  sample.  Let  us  assume  that  we  have  a  simple  random  
sample X1, X2,...,Xn from KEE(a,b,α,λ). The likelihood function of this 
sample is

[image: ]

Substituting from (9) into (26), we get

[image: ]

The   log-likelihood   function   for   the   vector   of   parameters  ϕ=(a,b,α,λ) can be written as

[image: ]

[image: ]

 The log-likelihood can be maximized either directly or by   solving   the   nonlinear   likelihood   equa-   tions   obtained   by   
differentiating (28).  The components of the score vector W(ϕ) are given  by

[image: ]

[image: ]

[image: ]

[image: ]

[image: ]

[image: ]

We can find the estimates of the unknown parameters by 
maximum  likelihood  method  by  setting  these  above  non-linear  
equations (29)-(32) to zero and solve them simultaneously.

Simulation Study


In   order   to   study   the   behavior   of   the   MLEs,   this   section   
presents the results of a Monte Carlo experiment on finite samples. 
For  this  study  we  consider  seven  different  set  of  parameters  
for n=50,80,100,150,200,400 and 800 generated according to a 
TGL  distribution.  Note  that,  generated  for  each  value  of  the  KEE  
distribution,  we  had  to  solve  a  nonlinear  equation  by  the  Newton  
Raphson method. All results were obtained from 1,000 Monte Carlo replications and fixed λ=α=0.5.



Table 1:  Estimated parameter values and errors for different values of the a and b parameters and different sample sizes. 

[image: ]




[image: ]




Table 2:   Coverage Probability and MSE of a and b parameters and different sample sizes.

[image: ]




[image: ]




The results are summarized in two tables.[Table 1]  shows the generated and estimated parameter 
values and their respectively errors over the 1, 000 MLEs, which are observed to decay as the sample size increases. [Table 2]Table 2 shows the coverage probability of a 95% two sided confidence intervals for the model parameters and the mean square errors, which are observed to decay as the sample size increases as the estimated errors.

Conclusion

In this paper we propose a new distribution  based on the Kumaraswamy distribution Jones [23], the Kumaraswamy Extension Exponential Distribution (KEE). The proposed distribution is very flexible model that approaches to  different  distributions  when its parameters are changed such as: a new exponential-type distribution which is introduced by Lemonte [30] the extension Exponential distribution which is introduced by Lemonte [30], Kumaraswamy generalized Exponential and Kumaraswamy exponential distribution [25] generalized Exponential introduced by Gupta & Kundu [1] and exponential distribution [25]. Some mathematical properties along with order statistics and estimation issues are addressed and a simulation study was made.
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