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Abstract 


Stochastic Gompertz diffusion model describes the in vivo tumor growth. The drift parameter describes the intrinsic growth rate (mitosis rate) of
the tumor. The paper introduces some new approximate minimum contrast estimators of the tumor growth acceleration parameter in the Gompertz
diffusion model based on discretely sampled data which are robust and studies their asymptotic distributional properties with precise rates of
convergence.
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Model and Estimators



The Gompertz diffusion process has been used in tumor
growth modeling, Ferrante et al. [1]
. Lo [2]
 considered a Gompertz
diffusion model in which the size of the tumor cells is bounded and
used Lie-algebraic method to derive the exact analytical solution
of the functional Fokker-Planck equation obeyed by the density
function of the size of the tumor. Giorno et al. [3]
 proposed a nonhomogeneous
time dependent Gompertz diffusion process with
jumps to describe the evolution of a solid tumor subject to an
intermittent therapeutic program. Moummou et al. [4]
 obtained
explicit expressions for the maximum likelihood estimators with
discrete sampling from the Gompertz diffusion model by using
functional optimization orthogonal projections. However, the
statistical properties of the model were not studied.


Ferrante et al. [1] studied maximum likelihood estimation of
natural growth parameters of tumor for such models. However,
they did not study distributional properties of the estimators. The
knowledge of the distribution of the estimator may be applied to
evaluate the distribution of other important growing parameters
used to access tumor treatment modalities. We study distributional
properties of approximate minimum contrast estimators of the
unknown parameters in the model from discrete data with precise
rates of convergence which are robust and efficient.


Let [image: ] P be a stochastic basis on which is defined
the Gompertz diffusion process [image: ]

satisfying the It. stochastic
dierential equation



[image: ]







Where [image: ]is a standard Brownian motion with the
filtration [image: ]
and α>0; β>0; σ>0 are the unknown parameters to
be estimated on the basis of discrete observations of the process {Xt} at time [image: ]
We assume
equi-spaced sampling for simplicity. We assume two types of high
frequency data: 1)
[image: ] Here Xtis the tumor volume which is measured at discrete
time,  αis the intrinsic growth rate of the tumor, β is the tumor
growth acceleration factor, and σ is the diffusion coefficient. Other
parameters are the plateau of the model[image: ]tumor
growth decay, and the first time the growth curve of the model
reaches X∞
 . We assume that the growth deceleration factor β	
does not change, while the variability of environmental conditions
induces fluctuations in the intrinsic growth rate (mitosis rate) α.
In finance literature, this model is known as Black-Karasinski
model which is a geometric mean reverting Vasicek model used for
modeling term structure of interest rates which preserves positivity
of the interest rates.




Let the continuous realization be {Xt,0≤t≤T}denoted by [image: ]be the measure generated on the
space (CT,BT) of continuous functions on [0,T] with the associated
Borel σ	algebra BT [image: ]
be the standard Wiener measure. It is
well known that when θ is the true value of the parameter[image: ] is
absolutely continuous with respect to [image: ] and the Radon-Nikodym 
derivative (likelihood) of [image: ]based on the data
[image: ]is given by



[image: ]







Consider the log-likelihood function, which is given by


[image: ]








A solution of the estimating equation γT(θ) = 0 provides the
conditional maximum likelihood estimators (MLEs)
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As an alternative to maximum likelihood method and to obtain
robust estimators with higher efficiency we use contrast functions.
Suppose α	 and β are known, for simplicity let [image: ] and our aim is to estimate the tumor growth acceleration parameter
β Using It. formula, the score function can be written as 



[image: ]










 Using a contrast function which is related to the negative
derivative of the log-likelihood function, we consider the estimating
function,



[image: ]







Then the minimum contrast estimate (MCE) of â which is the
solution of MT(β)= is given by



[image: ]








 Where IT=[image: ] Sometimes we
will denote this by just MT. We find several discrete approximations
of the MCE. Define a weighted approximation of IT:



[image: ]








Where wti≥
0 is a weight function. Denote the forward and
backward approximations of IT:
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 General weighted AMCE is defined as 



[image: ]








With 
wti =1 in (1.10), we obtain the forward AMCE as



[image: ]







 With = 0 in (1.10), we obtain the backward AMCE as



[image: ]








With w_(t_i )=0.5 in (1.10), the simple symmetric AMCE is
defined as



[image: ]








 Define the weighted symmetric estimators: With the weight
function


[image: ]








the weighted symmetric AMCE is defined as  [image: ] Note that estimator (1.16) is
analogous to the trapezoidal rule in numerical analysis. One
can instead use the midpoint rule to define another estimator [image: ] One can further use the Simpson's
rule to define another estimator where the denominator is a
convex combination of the trapezoidal and midpoint estimators,  



[image: ]







The AMCE has several good properties. The AMCE is simpler
to calculate, in the sense that it does not involve simulation of a
stochastic integral unlike AMLE. Hence AMCE is a more practical
estimator. This is robust since M-estimator is reduced to the
AMCE. The AMCE is efficient, Tanaka [5]
. Tanaka [5] calculated the
asymptotic relative efficiency of the minimum contrast estimator
with respect to least squares estimator (LSE) and showed that MCE
is asymptotically efficient while LSE is inefficient. We study the
distributional properties of the AMCE. We obtain the rate of weak
convergence to normal distribution of the AMCE using different
normings. We also obtain stochastic bound on the difference of the
AMCE and its continuous counterpart MCE when T is fixed. We need
the following lemmas from Bishwal [6] to prove our main results.


Lemma 1.1 Let X, Y and Z be any three random variables on a
probability space (Ω,F,P) with P(Z>0)=1. Then, for any .>0, we have



[image: ]
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Lemma 1.2 Let Qn, Rn, Q and R be random variables on the
same probability space (Ω,F,P) with P(Rn=0)=1 and P(Rn=0)=1.
Suppose [image: ]



[image: ]






Distributional Properties of Estimators


Let Ø(.) denote the standard normal distribution function.
Throughout the paper C denotes a generic constant (perhaps
depending on β, but not on anything else). Since ln Xt is an Ornstein-
Uhlenbeck process, we can use the following lemmas from Bishwal
[6] in the sequel.



[image: ]






The following theorem gives the bound on the error of
approximation of the distributions of the AMCE to normal
distribution. Note that part (a) uses parameter dependent nonrandom
norming. While this is useful for testing hypotheses about
β	, it may not necessarily give a confidence interval. The normings
in parts (b) and (c) are sample dependent which can be used for
obtaining a confidence interval. Following theorem shows that
asymptotic normality of the AMCE needs the design condition
[image: ] 


Theorem 2.1



[image: ]
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Thus, we have I Hence
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Further,
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Next, observe that
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(the bound for the 3rd term in the right hand side of (2.4) is
obtained from (2.3))
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(by Lemma 2.3(a)).


Choosing [image: ] the terms in the right hand side of
(2.5) are of the order [image: ] 


(b) From (2.1), we have  [image: ] Then,
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We have from (2.3),



[image: ]
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Here, the bound for the first term in the right hand side of (2.7)
comes from Lemma 2.2(c) and that for the second term is obtained
from (2.3) [2]. Now, using the bounds (2.7) and (2.8) in (2.6) with [image: ]we obtain that the terms in (2.6) are of the order [image: ] 


(c) Let [image: ] On the set GT ,
expanding [image: ] we obtain



[image: ]






Further,



[image: ]






On the set [image: ] Hence, upon choosing [image: ] C large, using Lemma 1.1(b)) and Theorem 2.1(a)),
we obtain



[image: ]
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In the following theorem, we improve the bound on the error of
normal approximation using a mixture of random and non-random
normings. Thus asymptotic normality of the AMCEs need T →∞
and  [image: ] which are sharper than the bound in Theorem 2.1.


Theorem 2.2
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Proof: From (2.2), we have



[image: ]






Hence, by Lemma 2.1-2.3



[image: ]






Choosing [image: ] , the theorem follows. 


The following theorem gives stochastic bound on the error of
approximation of the continuous MCE by AMCEs.


Theorem 2.3



[image: ]






Proof: From (1.9) and (1.14), we have [image: ] Hence, applying Lemma 1.2 with the aid of Lemma 2.3(a) and
noting that [image: ] (1) the part (a) of theorem
follows. From (1.9) and (1.16), we have [image: ] Applying Lemma 1.2 with the aid of Lemma 2.3(b) and noting that [image: ] (1) the part (b) of theorem follows. 
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