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Leucovorin is a Better Folate Source
for Pregnancy

George Ayoub*
Psychology Department, Santa Barbara City College, USA

Abstract

Folinic acid (leucovorin) supplementation in Folate Receptor Alpha Autoantibody (FRAA)-positive
pregnancies offers a biologically targeted strategy to reduce Autism Spectrum Disorder (ASD) risk and is
proving superior to folic acid across a broader range of reproductive and neurodevelopmental outcomes.
A pilot randomized trial by Giorlandino et al. together with emerging clinical data on infertility and
preclinical evidence on a negative impact of excess folic acid, suggests that leucovorin is the optimal
choice of folate form for precision prenatal care. For pregnancies where FRAA is present, standard folic
acid supplementation resulted in a majority of the births diagnosed as autistic within three years, while
leucovorin supplementation resulted in a 10% autism rate. This striking difference is further evidence of
the importance of choosing the appropriate form of folate for perinatal care, with leucovorin proving the
safer choice, especially in the presence of FRAA [1-5].

Overview

Leucovorin (folinic acid) has emerged as a promising alternative to folic acid for pregnancy,
particularly in women with Folate Receptor Alpha Autoantibodies (FRAA) and those with
folate metabolism polymorphisms. This commentary examines the pilot randomized trial by
Giorlandino et al. in FRAA-positive pregnancies alongside clinical observations in infertility
and preclinical data on excess folic acid exposure. In the Giorlandino trial, leucovorin
supplementation, compared with folic acid, was associated with markedly lower Autism
Spectrum Disorder (ASD) incidence, reduced ASD symptom severity, and higher Bayley-4
cognitive scores in offspring, despite a small sample size. Case series in women with MTHFR
polymorphisms and infertility suggest that switching from folic acid to reduced folates (folinic
acid or methylfolate) can restore fertility and lead to successful pregnancies, highlighting
folate form as a modifiable determinant of reproductive outcome. Preclinical work further
indicates that excess prenatal folic acid can alter cortical DNA methylation and gene
expression networks, raising concern that high-dose folic acid may perturb brain development
in susceptible populations. Together, these converging lines of evidence support a shift from a
one-size-fits-all folic acid paradigm toward precision folate strategies that incorporate FRAA
status, genetic background, and folate form, and they motivate the central question of whether
leucovorin is a better folate source for pregnancy in defined high-risk groups [6-10].

FRAA, Folate Transport and ASD Risk

Giorlandino et al. intervened along a mechanistically coherent causal chain in which FRAA
impair folate receptor-mediated transport across the placenta and blood-brain barrier, causing
cerebral folate deficiency despite normal systemic folate. FRAA block folate receptor alpha and
diminish 5-methyltetrahydrofolate (5-MTHF) delivery to the fetal brain, a mechanism linked
to ASD, infantile-onset cerebral folate deficiency, and related neurodevelopmental syndromes.
FRAA are substantially more prevalent in children with ASD and in mothers of ASD-affected
children, defining an immune-mediated endophenotype within the broader ASD spectrum.
In ASD children with cerebral folate deficiency, open-label and case series data indicate that
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approximately two-thirds improve with leucovorin, especially in
communication and irritability, and experimental models show
that maternal FRAA exposure induces offspring behavioral changes
that leucovorin can prevent, supporting a causal role for impaired
folate transport [1-3]. Within this framework, the Giorlandino trial
is the first randomized human study to test whether correcting
FRAA-related folate transport failure during pregnancy can
modify early ASD risk markers instead of treating established ASD
postnatally.

Prevention Signal in FRAA-Positive Pregnancies

In the trial, 210 women planning pregnancy were screened

and 17.1% were FRAA-positive, indicating that this immune risk
factor is not rare in the general preconception population. Among
the 29 FRAA-positive women who conceived and were randomized,
18 completed follow-up (10 received leucovorin, 8 received folic
acid) with supplementation initiated after pregnancy confirmation
and continued to delivery. Figure 1 provides a visual summary of
their study. The neurodevelopmental signal, although generated
from a small per-protocol sample, is striking: ASD incidence at 24-
30 months was 10% in the leucovorin group versus 62.5% in the
folic acid group (Fisher’s exact p=0.043), corresponding to an odds
ratio around 0.07-0.08 and an estimated relative risk reduction of
approximately 84%.
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Figure 1

Learning disorders were less frequent in the leucovorin
arm (10% vs. 50%; odds ratio 0.13), and ASD symptom severity
(ADOS-2) was significantly lower while Bayley-4 cognitive scores
were substantially higher, each with very large effect sizes (Cohen’s
d>1.4-1.5). The single ASD case in the leucovorin arm carried
a pathogenic SHANK2 variant, illustrating that folate-immune
mechanisms represent one etiological route among many and that
pathway correction cannot prevent strongly genetic forms [4]. The
clustering of greater ASD severity and lower cognition in the folic
acid group, plus a strong negative correlation between ADOS-2
scores and Bayley-4 indices, reinforces a consistent pattern of
folate-mediated neuroprotection when FRAA-positive pregnancies
receive leucovorin.

Why Leucovorin May Outperform Folic Acid

Standard prenatal folic acid policy assumes intact folate

receptor alpha-mediated transport to deliver 5-MTHF to

the placenta and choroid plexus, an assumption that fails in
FRAA-positive women. In FRAA-positive pregnancies, this receptor
pathway is partially blocked or dysfunctional, creating cerebral
folate deficiency despite apparently adequate circulating folate, and
undermining the protective intent of folic acid [5,6]. Leucovorin
differs from folic acid in two clinically relevant ways: it enters
cells through alternative transport systems, notably the reduced
folate carrier and proton-coupled folate transporter, thereby
bypassing antibody-blocked folate receptor alpha, and it is already
in a reduced, metabolically active form that more directly supports
nucleotide synthesis and methylation, processes essential for
neurogenesis and synaptogenesis [5,7,8]. Preclinical data indicate
that high-dose folic acid can, in some settings, be associated with
adverse neurodevelopmental effects, whereas leucovorin shows
neuroprotective benefits without the same concern profile,
underscoring that the chemical form and transport route of folate
are critical variables rather than interchangeable means of raising
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total folate [9]. Taken together, these observations suggest that
leucovorin may be a more physiologically appropriate folate source
in contexts of impaired receptor-mediated transport or altered
folate metabolism, including FRAA positivity and certain genetic
variants.

Reversal of Infertility by Switching Folate Form

An underappreciated but highly relevant strand of evidence
comes from clinical series in women with infertility and MTHFR
polymorphisms, in whom changing the folate form alone appears
to restore fertility and enable healthy pregnancies. In a case series
by Ledowsky et al. [10], women with diagnosed infertility and
MTHFR variants who had been using folic acid were transitioned
to alternative folate formulations, leucovorin or methylfolate,
resulting in successful conceptions and healthy births after prior
unsuccessful attempts [10].

These infertility cases highlight several important principles
for pregnancy folate policy: first, that folic acid is not universally
benign nor uniformly effective across genotypes, and second, that
correcting the form of folate, without altering the nominal dose,
can reverse a clinically significant reproductive phenotype. When
viewed alongside FRAA-positive pregnancies in the Giorlandino
trial, these data suggest that both immune-mediated and genetically
mediated impairments of folate handling may respond more
favourably to reduced folate forms, including leucovorin.

From a translational perspective, the infertility experience
strengthens the argument for individualized folate formulations,
incorporating both autoantibody status and genetic polymorphisms
(such as MTHFR) into preconception and early-pregnancy risk
assessment. It also broadens the rationale for leucovorin and
related reduced folates from neurodevelopmental prevention into
the domain of reproductive success, positioning folate form as a
modifiable determinant of both conception and subsequent fetal
brain development [11].

Excess Folic Acid and Altered Brain Development

Preclinical work demonstrates that more folic acid is not
necessarily better and that high-dose folic acid exposure during
vulnerable developmental windows can perturb brain development
at the epigenomic and transcriptomic levels. In a recent study,
excess prenatal folic acid altered cortical DNA methylation and gene
expression networks, indicating that supra-physiologic levels of this
synthetic vitamin can reprogram neurodevelopmental trajectories
in ways that may not be benign [9]. A recent clinical study on folic
acid use observed that of the 1200 women followed, those with
folic acid supplementation in the second trimester had children
with higher rates of behavioral problems at age four. Similarly, the
women with folic acid supplementation during preconception and
second trimester had children with poorer cognitive development
[12].

These findings carry several implications for pregnancy folate
policy: they challenge the assumption that increasing folic acid
intake is uniformly protective and highlight the importance of
physiological folate forms that align more closely with endogenous

metabolism. They also raise the possibility that, in susceptible
subgroups, including those with FRAA, MTHFR polymorphisms, or
other metabolic bottlenecks, high folic acid exposure could create
a mismatch between circulating folate and intracellular utilization,
amplifying epigenetic perturbations in the developing brain.

Against this backdrop, leucovorin offers a mechanistically
attractive alternative: it directly feeds into reduced folate pools,
can bypass certain transport and metabolic constraints, and has
not been associated with the same pattern of adverse preclinical
neurodevelopmental changes atcomparable doses. The convergence
of preclinical data on excess folic acid with clinical observations
of leucovorin’s benefits in ASD, FRAA-positive pregnancies, and
infertility underscores that the choice of folate form may help avoid
iatrogenic risk while maximizing neuroprotection.

Toward Precision Folate Strategies in Pregnancy

The Giorlandino trial raises important translational questions
for obstetrics, neurology, and nutrition regarding screening and
targeted supplementation. FRAA are present in 60-70% of mothers
of children with ASD in prior studies and in 17% of women planning
pregnancy in this trial, suggesting that FRAA testing could function
as a feasible biomarker for stratifying neurodevelopmental risk and
guiding folate formulation.

In FRAA-positive pregnancies, leucovorin was associated with
lower ASD incidence, reduced ASD symptom severity, and improved
cognitive outcomes, while folic acid failed to provide comparable
protection, and leucovorin already carries a favorable safety profile
in pregnancy when used for hematologic indications. Combined
with the infertility case series and preclinical folic acid data, these
results support a broader re-examination of folate policy that
differentiates by immune status, genotype, and metabolic context
rather than relying solely on generic folic acid dosing targets.

Current guidelines, built primarily around neural tube defect
prevention, remain anchored to folic acid and do not address
the implications of FRAA, MTHFR polymorphisms, or potential
neurodevelopmental effects of excess folic acid. A next-generation
framework would integrate FRAA screening, selected genetic
testing, and careful consideration of folate form, favoring leucovorin
or other reduced folates in defined high-risk groups, while larger
multicentre trials extend and validate the promising pilot signal
observed by Giorlandino et al.

Integrating Immunology, Genetics and Nutrition

Perhaps the most significant conceptual advance from this set
of findings is the integration of maternal autoimmunity and genetic
variation into prenatal nutrition and ASD prevention paradigms.
FRAA-mediated cerebral folate deficiency bridges immunology,
metabolism, and neurodevelopment, and the infertility and
preclinical folic acid data add genetic and epigenetic dimensions,
together defining a multi-layered folate biology that is not
addressed by one-size-fits-all folic acid supplementation.

Future work should expand FRAA research beyond ASD to
include language delay, learning disorders, and ADHD; harmonize
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FRAA assays, thresholds, and reporting standards to enable
clinical laboratory implementation; and systematically explore
timing, dosing, and co-nutrient strategies for leucovorin, including
preconception initiation. Against this evolving evidence base, the
question “Is leucovorin a better folate source for pregnancy?”
becomes not merely speculative but empirically grounded, with
early data suggesting that, for specific immunologic and genetic
subgroups, the answer may well be yes.
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