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History of BCI 
Brain-Computer Interfaces (BCI) refer to the detection and implantation of brain signals 

and technology. The first implementation demonstrated and described in an academic setting 
was in 1964 by Dr. William Grey Walter of the Burden Neurological Institute of Bristol, who 
adapted Dr. Hans Berger’s (of the Friedrich Schiller University of Jena) research from 1934 
on Electroencephalogram (EEG) technology. This first demonstration from Dr. Walter had 
patients with “electrodes connected directly to the motor areas of a patient’s brain [1]. The 
patient would then “press a button to advance a slide projector,” making a neural connection 
that the EEG recorded. Upon enough presses, Dr. Walter would then connect the slide 
projector to the EEG directly, having the slides advance whenever the patient would make 
the neural connection to advance the slide. This connection would end up being long before 
the patient would normally press the button, introducing a way to control long before motor 
movement actually would occur, sparking the beginning of BCI [2]. 58 years later, in 2022, BCI 
still has much of its’ roots in the medical field. Mamunur Rashid in Current Status, Challenges, 
and Possible Solutions of EEG-Based Brain-Computer Interface [3] discusses how the current 
state of BCI is “not limited to medical applications however, and hence, the research in this 
field has gained due attention.” This same article discusses current research in the field, 
including control of wheelchairs in Fernández-Rodríguez et al. [4], control of mobile robotics 
by Bi et al. [5], biometrics by Alariki et al. [6], and pertinent to our focus, virtual reality and 
gaming by Kaplan et al. [7], Ahn et al. [8], and Cattan et al. [9], which will be further discussed 
in the “Recent Developments” portion of this paper.

The future of EEG and BCI relies heavily on solving the issues of high Signal-to-Noise 
Ratios (SNR). Dr. Rashid describes this as “amongst the greatest challenges in EEG-based BCI 
application studies.” Mridha et al. pulled a summary of recent surveys and reviews on BCI 
technologies, drafting in their research a list of challenges [10]. Training time and fatigue, 
precariousness of surgery if the sensor in semi/fully invasive, and signal processing were the 
top challenges among 8 studies in the past three years. This will be further discussed in the 
“Analysis of Limitations” portion of this report. P Arico et al. discusses the future direction 
of BCI in terms of its’ applications [11], including promising results in the field of driving, 
evaluating “the ability to perform effective teamwork,” training and assessments, gaming, 
and “Neuromarketing” (consumer science, or the field of studying brain signals during the 
observation of advertisements to improve their effectiveness).

Existing Devices and Approaches 
In R. Millan et al, 2020, the various approaches to BCI are discussed and gives a thorough 

representation of the various options for capturing brain signals [12]. The three types of BCI 
currently researched are split via how invasive, or how the apparatus to record the signals 
is installed, the procedure is. EEG, as discussed earlier, is considered non-invasive, as it 
uses electrodes and sensors that sit on the hair or exposed skin of the scalp to record data. 
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Electrocorticographic signals, as discussed by researcher Gerwin 
Schalk, “is acquired by placing electrodes underneath the skull, 
either above (epidural) or below (subdural) the dura mater, but 
not within the brain parenchyma itself.” This is considered semi-
invasive, as we must place technology within the skin but does not 
require a full placement within grey matter [13]; (Figure 1).

Figure 1

Non-Invasive 
EEG

Electroencephalogram Brain Computer Interfaces (EEG BCI), 
and BCI as a whole comprise of five components, as described by 
Dr. Mridha: “brain activity measurement, preprocessing, feature 
extraction, classification, and translation into a command [10]. First, 
the signals given off by brain activity must be captured somehow 
(in the case of EEGs, this is through surface-level sensors. This data 
contains noise and artifacts, of which are eliminated through pre-
processing (discussed further in “Analysis of Limitations.”). Feature 
Extraction aims to take this “cleaned” data and sort the signals 
into values used to describe the various elements of the signal. 
These values are given along with the “cleaned” data to a machine 
learning/neural network algorithm to be classified and sorted 
according to these values. This organized and classified data is then 
passed to a device to result in some command (in the example with 
Dr. Walter, this command would be to move to the next projector 
slide) [10]. 

SSVEP vs P300 
In Guger et al. [14] the question of SSVEP applications in BCI is 

initially discussed. The study, consisting of fifty-three volunteers, 
ran using electrode caps as configured in the image above, running 
LED simulations and volunteers were asked to focus on various 
signals and stimuli given by the researchers. This study found that 
in terms of training and focus, “all of the subjects who participated 
can achieve acceptable accuracies with SSVEP based BCIs after a 
very short training interval, and most subjects could attain 100% 
peak accuracy [14]. For SSVEP, the main focus for performance is 
on signal detection time and accuracy. Zhao et al. [15] discusses a 
direct comparison of direct control BCI for P300 and SSVEP. This 
study found that “The SSVEP model yields more rapid response to 

visual stimuli and is nearly independent of channel selection, but 
the number of the classifiable targets that can be displayed… is 
limited. Meanwhile, the P300 model can provide more classifiable 
targets and demands even less training, but response time is 
slower because it requires flashing stimuli one by one. While both 
can be implemented separately, a 2013 study from IEEE found 
that “data analysis results showed that combining P300 potential 
and SSVEP significantly improved performance of the BCI system 
in terms of detection accuracy and response time [16]. Another 
2020 study on BCI controlling for Emotiv experiments found 
“combined classification results from SSVEP and P300 improved 
the reliability in classification for controlling external applications 
in a time window of three seconds [17]. The introduction of P300 
alongside SSVEP improved accuracy for both studies, however the 
introduction of P300 would result in short delays from introduction 
of stimulus acquisition to device command. 

MEG 

While EEG recorded signals have distortions and noise 
due to hair and tissue between the signals and the sensors, 
magnetoencephalography cuts through this noise via whole-head 
neuroimaging utilizing “sensitive magnetometers and gradiometers 
to record the magnetic fields associated with intracellular post-
synaptic neuronal currents in the brain [18].This results in reduced 
noise and higher accuracy and is often used in speech-related 
research due to its capability of capturing speech signals in fast and 
efficient ways compared to EEG. The biggest concern is the cost and 
size. Although research is currently underway and recent studies 
show promise of smaller, portable MEG devices [19], current 
devices are often costly and take entire rooms to implement. 

Semi-Invasive 
ECOG 

In a 2011 study published by IEEE, electrocorticography 
is described as obtaining “activity recorded directly from the 
surface of the brain” [20], however requires invasive surgery and 
monitoring to place these electrodes and sensors on the surface of 
the brain. This necessary surgery requires clinical monitoring and 
medical expertise to stabilize patients as these are implemented 
and monitored. ECoG is often used in research on epileptic patients 
or patients with brain related medical issues [20]. 

Popular Brain Sensor Devices 
Emotiv Offerings (HTTPS://WWW.EMOTIV.COM/) 

Emotive is the more commercialized of the research EEG 
headsets, and also ranges to be some of the most expensive. The 
three available for purchase on their website listed above are the 
Insight, a 5-channel EEG that wraps around the ears, the epoch, a 
15channel EEG covering around the skull, and the Epic Flex, with 
32-channels. The Insight retails for $499.00, the epic retails for 
$849.00, and the Epoc Flex depends on type of cap for pricing, the 
Saline sensors retailing for $1,699.00-1,799 and the gel sensors 
retailing for $2,099.00 and offers portability. Research that utilized 
this headset are Performance of the Emotiv Epoc headset for P300-
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based applications [21], 2013, An Investigation on Non-Invasive 
Brain-Computer Interfaces: Emotive Epic+ Neuroheadset and Its 
Effectiveness [22], 2021, A robust and reliable online P300-based 
BCI system using Emotiv EPOC + headset [23], 2020.

Openbci (HTTPS://SHOP.OPENBCI.COM/COLLECTIONS/
FRONTPAGE) 

Described by John La Rocco in his study A Systemic Review of 
Available Low-Cost EEG Headsets Used for Drowsiness Detection 
in 2020 [24], Open BCI consists of an Open BCI board that 3D 
printable open-source headsets can utilize, capable of using 4, 8, or 
16 EEG channels, and requires “assembly prior to use, and therefore 
is not as widely used as readily-purchased consumer devices, but it 
theoretically allows greater customization.” The pricing for Open 
BCI depends on what a user would want to purchase and use the 
headsets for. Boards start at $694.99 for a basic 4-channel board 
and increase up to $1,424.99 for a 16-channel board. Starter kits 
range from the “DIY Neurotechnologist’s Starter Kit” at $1,284.99 
to the “All-in-One Biosensing R&D Bundle” at $2,970.99. Notable 
research for BCI and VR are Impact of screen size on cognitive 
training task performance, 2021 [25] Connecting the Brains via 
Virtual Eyes: Eye-Gaze Directions and Inter-brain Synchrony in VR, 
2021, [26] and Connecting the Brains via Virtual Eyes: Eye-Gaze 
Directions and Inter-brain Synchrony in VR, 2021 [27].

Analysis of Limitations 
In the field of BCI utilized for gaming, the main limitations 

many researchers face is that of stability and consistency in using 
these systems. In many cases, BCI is reported to cause a “high 
level of fatigue and demands high concentration or attention to 
stimulus, and that it has a very low information rate [28]. Much of 
the consumer-focused EEG can see similar results however without 
supervision and precise implementation on someone, many of 
these sensors may be off and in multiple journals, increase of noise 
and interference was a high barrier to entry [28]. 
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