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Introduction
Phishing has been accounted for many fraudulent incidents on the internet in the recent 

years, and it is showing no sign of stopping anytime soon. So, what is phishing? It is a term 
that is used to describe a malicious individual or a group of individuals who scam users. This 
is done by sending emails or creating web pages that are designed to collect an individual’s 
online credentials, credit card details or other login information’s. The concept of detecting 
phishing websites is usually done by looking through a huge database or a directory that 
contains all the malicious sites that has been logged by internet users or community members. 
An effective way for end users to benefit from phishing detection is by having the option to use 
an extension plugin that works on real time, as it gives them real time indication of what they 
are surfing and as well as if they are safe while browsing. With these issues in mind, and how 
it affects the security aspect of users on the internet and as well as giving concerns to privacy 
to the user, this research will be implemented as a google chrome extension that can achieve 
the ability to do classification without needing a 3rd party server to do so.

Understanding the problem

In order to begin the development of a google chrome browser extension, it should 
emphasize on the ability to alert and warn the users if they accidentally visited a phishing 
webpage. This chrome extension will also be developed keeping in mind that, it should not 
have any 3rd party servers or API present to call services as this gives a narrow path for 
hackers to target users browsing pattern. Lastly, this extension plugin will also provide an 
instantaneous detection service that warns users as they view a phishing website, just so they 
avoid entering any confidential information before it is too late. 

Abstract

This research will propose a client side based phishing detection extension for Google Chrome browser 
that can assist in detecting and warning users about the websites they are currently browsing in real-
time. This would be achieved by using random forest classifier a machine learning method, as based on 
past research done it concludes that it performs far better than other machine learning techniques in the 
field of detecting Phishing. Most common method of obtaining this is by providing the classification on a 
server and then performing a request to the server via the extension plugin to get the result. Unlike this 
method, this research will emphasize on running the classification on the browser instead. This is done 
because it has several advantages running on a client side as it provides a better privacy to the users 
since their browsing data and pattern is not compromised as it does not leave their machine. This will 
also make the detection plugin independent towards latency issues. This research mainly will focus on 
implementing machine learning in JavaScript for it to run on a browser as an extension since JavaScript 
does not have much library support towards Machine Learning and also to keep in mind of the users 
machines performance. This approach should be made with the intention of having it lite in order to 
achieve the capability to allow as much users as possible to use it. Random forest classifier for this project 
will be trained traditionally based on the phishing dataset 2 using Python scikit, and parameters of this 
model will then be exported in a JSON format to be used together with JavaScript.
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Background information and work

One most popular directory-based approach is PhishTank 
[1]. What Phish Tank offers is a very collaborative data house 
regarding all the phishing websites on the World Wide Web with 
information’s regarding the website to indicate how severe it is to 
have users aware. Another feature Phish Tank offers, is their open 
API availability for allowing researchers, developers to integrate it 
into their phishing tools without any cost behind it. Based on that 
availability, Phish Tank is considered as a directory that contains 
all phishing websites reported by community members around 
the world which aids developers when they use their API for 
phishing detection purposes. Another API that exists which helps 
in developing tools for phishing detection is from Google called Safe 
Google Browsing API [2], but it also follows the same directory-
based approach as Phish Tank. The downside of this approach is 
that there is always a constant influx of new phishing websites in 
the web and this cannot always be updated in a real time moment 
and it will also require huge rate of contribution from community 
members to always update their directories with new updated 
phishing websites that exist. Detection of phishing methods is 
based on server base side and client base side. One of the existing 
google chrome extension plugin that follows a rule-based concept 
is called Phish Detector [3], which allows eligibility to detect 
phishing websites without the usage of an external web service. 
While implementing such plugin is much easier from a client side, 
it cannot be compared to how accurately it will be whilst being 
compared to machine learning approach techniques.

Another tool that works with rule-based concepts is PhishNet, 
where it uses a predictive method for blacklisting. The rules that 
are being adapted are being matched with a term called Top Level 
Domain (TLD) directory structure, IP addresses, and headers 
of HTTP responses. Stanford developed tool called SpoofGuard 
[4] works just like PhishNet mentioned above, butit considers 
rule-based approach using DNS, URLs, clickable links and images 
presented on the web-page. Author from the research paper 
“Feature extraction and classifying websites that are malicious 
based on their URL” [5] used a technique where he extracts the 
features to make a feature matrix that was substantially used to 
classify URLs. In their development, they extracted roughly 133 
features and they only use sub-part of it which they concluded 
as feasible for their project. It was also not understood why they 
didn’t specify their reasoning for choosing specific parameters to 
declare websites as malicious or not otherwise. Parameters that 
were set and used together with related respective algorithms 
in their projects were different to what we do plan to use for our 
development and project implementation. For our master’s project, 
we have decided to only use one single algorithm that suites best 
and identifying what features that were given from our dataset 
would help us respectively. A research article “Comparing machine 
learning techniques for detection” [6] a comparative study was done 

between six various classifiers to understand which classifier will 
fit and work best in distinguishing a phishing URL and a legitimate 
URL. The authors concluded that Random Forest classifiers fit 
and worked best due to having lowest error rate among the five 
remaining classifier that was used for the comparative study. In an 
article regarding how using machine learning can aid in detecting 
phished URL [7], the author raises questions and awareness how 
phishing in general on the internet has rose significantly over the 
recent years and also discusses technique implementation on 
feature extraction and understanding what ideal machine learning 
algorithm will best fit the classification. While we don’t particularly 
follow their exact measures of extracting features like details 
on traffic, page rank detail features, this paper provides an ideal 
footstep for understanding what features can be extracted based 
on our requirements for our project [8]. While in the paper, the 
author hasn’t represented any indication of the best algorithm 
that fits these projects, we in our master thesis project will give 
a statistical analysis on why Random Forest classifiers is the best 
fit together with its accuracy for the chosen algorithm. Netcraft 
phishing protection basically works as a big neighborhood watch 
scheme. Once someone reports a potential phishing website 
into the community, it will then be investigated and if it’s proven 
as a phishing website, the targeted URL will be blocked for their 
community members [9]. Phish Detector has a 100% success rate 
on detecting phishing attacks on online banking websites. To obtain 
positive accurate results, only use this tool on banking websites 
[10] as this extension does not work on other website domains.

Another existing phishing detector that exists in today’s market 
is called cascaded phishing detector. It basically functions as a client 
side and as well as server-side tool where the client side is developed 
as a chrome extension. This is then followed up by injecting certain 
scripts to the respected websites to extract the relevant and related 
corresponding HTML DOMs [11,12]. This extension compared to 
the existing extensions that exist in the market only gives priority 
to the HTML DOMs to identify the prospect of being phished while 
disregarding the other parameters.

Analysis of the system

Functional system requirement: Extension plugin should 
provide a warning pop-up when they visit a website that is phished; 
therefore it should strictly follow the following: 

a.	 Extension plugin ability to present the pop-up to the 
users screen should be quick enough to the point, users will be 
aware before entering any confidential or sensitive details into 
a phishing website.

b.	 Extension plugin should not need the facilities and 
services from an 3rd party service or APIs, due the reason that 
those services will always the potential to leak users browsing 
data and pattern when it gets compromised by hackers
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c.	 Extension plugin will have the capability to also detect 
latest and new phishing websites

Non-Functional system requirement: Graphical User 
Interface design Interface developed should be done with the 
understanding that it must meet the simplicity of what users would 
like to see when they need an extension for detecting things, and 
also it needs to adhere to non IT literate users as well. It must 
also provide the exact information on what the user wants like 
identifying a phishing website quickly without needing to click on 
many options. The process of identifying phishing website should 
be taken directly from the web-page user wants to view through 
their URL and the result from it should be easily understood by the 
users. Most importantly, the extension plugin should have a pop-
up that will notify the user regarding the website status of being 
phished.

Software requirements:

a.	 PyCharm software 

b.	 Python language

c.	 Google chrome browser 

d.	 Scikit-learn 

e.	 NumPy 

f.	 Liac-arff for dataset

Designing of the system

The architectural concept of the system begins by training a 
Random Forest classifier on dataset that contains URL features that 
can be classified as phishing, legitimate, and suspicious on python 
using Scikit learn. The result of the random forest classifier is then 
represented in a JSON format and as well as the classifier that has 
learnt will be represented in JSON format over HTTPS. Once this 
is achieved, a script that is implemented using JavaScript for web 
browser is developed which will use the exported JSON format 
model to provide classification of web pages that will be viewed 
over an users internet browser. The (Figure 1) displayed below 
will provide an understanding of the system architecture through 
a system diagram. The main functionality of the plugin extension 
that is being implemented is to issue a warning notification through 
a pop up towards the users browser screen in the circumstances if 
the user accidentally is on the verge of visiting a phishing website. 
To provide this, classifier should be done on the 17 selected features 
out of the 30 features that exist in the dataset. Dataset is in an arff 
file format therefore it needs to be loaded using arff library 1 that 
python supports. Reason why only 17 features are selected from 
30 available features is based on the possibility that these selected 
features can be extracted without needing to be online from a client 
side rather than being extracted completely from a 3rd party server 
or service. Dataset that has been used for this implementation of 

project is then separated into, a training dataset and to a testing 
dataset. Using the training data, random forest is then trained 
on it and the results are exported in a JSON format over HTTPS2. 
From client side, the google chrome extension then performs an 
execution of script on every webpage it loads from the browser, and 
it then simultaneously converts the selected features that have been 
specified. As these specified features are once converted, google 
chrome extension plugin then proceeds to verify for the initial JSON 
model that is stored in cache. Together with the converted features 
and the model in JSON format, the script on the extension plugin 
can ideally run a classification. Once this is successfully achieved, 
a warning notification through a pop-up can be displayed towards 
the user, if the web-page the user is visiting is considered phishing. 
The process implementation of this extension plugin is very lite 
towards users computers and as well it gives the capability to 
detect phishing website in a quick effective manner.

Figure 1: Graphical user interface.

User interface design

The designing of the GUI of the plugin was made simple and 
feasible to attract all audience to use it, and also understands the 
contents it will be displaying needs to be easy to understand for all 
users, and all this is achieved by using mix of HTML3 and as well 
CSS4. The user interface will provide the main indication to user 
on how legitimate the web-page they are viewing through a large 
circle. This circle will change colour depending on how the websites 
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are being classified, if its phished or legitimate. The results that are 
derived from the classification are visually represented in the large 
circle with the following colour code:

a.	 Dark Green - Legitimate website and safe to view

b.	 Golden Orange - Suspecting possible phishing website

c.	 Crimson - Phished website

The percentage score represented in the chart is calculated 
in the frontend.js section of the development where legitmate 
Count(phishingCount+suspiciousCount+legitimateCount)*100

i.	 function classify (tabId,result) {

ii.	 var legitimate Count=0;

iii.	 var suspicious Count=0;

iv.	 var phishing Count=0;

v.	 for(var key in result) {

vi.	 if (result[key]==”1”) phishing Count++;

vii.	 else if(result[key]==”0”) suspicious Count++;

viii.	 else legitimate Count++;

ix.	 }

x.	 L e g i t i m a t e P e r c e n t s [ t a b I d ] = l e g i t i m a t e C o u n t /
(phishingCount+suspiciousCount+legitimateCount)*100;

Listing 1: code for obtaining and calculating legitimate Percent. 
This helps us to provide a justifiable score based on feature 
categorization into phishing or legitimate sites. One of the existing 
issue due to how this is calculated is, the percentage representation 
of sites can be confusing to users at initial glance since, without 
knowing how it is being calculated they might question the 
authenticity of the percentile score of classifying websites. This is 
something that is being constantly emphasized on for future work 
progress.

Extension plugin will also have the function to alert users 
when they are about to view a website if it is a possible phishing 
website, in-order to prevent any entry of confidential or sensitive 
information’s from user into the web-page. Accuracy score, together 
with recall and precision results will also be available for users to 
view on a separate tab that can be accessed from the main plugin 
interface. The designed concept of the graphical user interface can 
be seen from (Figure 1) that is displayed below.

Design of model

Dataset that is being used for this project is initially downloaded 
from UCI dataset repository and then it is imported into an array 
with NumPy. The dataset that is loaded has 30 features with it, but 
it needs to be re-evaluated to figure out which specific features 

can be used and extracted on the browser extension plugin. This 
is done by manually testing each features on the plugin to identify 
which features are capable of working without needing a 3rd party 
service to give results. Accomplishing this, helped us identify the 17 
specific features from the initial dataset that gives results without 
drastic loss in accuracy value coming from test data. While having 
more features being used from the dataset can easily provide better 
results value for accuracy but this would require more processing 
time to produce the result and this would not be following the 
gene scope of the project that was to provide a quick and effective 
phishing detection. It needs to be understood, the features that 
were chosen specifically will be a compensation for quicker result 
than for accurate results. (Table 1) will show the 17 features that 
have been selected. Once this is completed, dataset is then split into 
training and testing data where its 30% for testing data and the 
remaining 70% will be for training data.

Table 1: Features that were selected to identify phishing 
websites.

IP Address No. of Sub Domains Anchor

URL Length HTTPS Scripts & Link

Tiny URL Favicon SFH

@ symbol Ports mailto

Redirecting using// HTTPS in URLs domain 
part iFrames

(-) Prefix/Suffix in domain Request URL

Training of model

Training of the data obtained from pre-processing are loaded 
and random forest is then trained on the training data using 
scikit-learn. As it is known, Random Forest is part of an ensemble 
machine learning 5, which allowed us to use 10 estimators for our 
classification. The decision tree estimators works under CART 
algorithm6 and impurity of gini is reduced in each decision tree 
to provide the result. Cross Validation score is also done on the 
training data while the F17 score is calculated on the testing data. 
Lastly, the model that has been trained with results and parameters, 
it will be exported using JSON format.

Development of the System
Project that has been developed is divided into 2 different 

category, namely the backend which consists of classifier and 
dataset and frontend of the system. The work of backend is to pre-
process the dataset that was used and also, train the models with 
Random Forest with chosen parameters and values. Front end of 
the system development mainly consists of JavaScript, also scripts 
to enable the contents to be functional, and scripts that’s running on 
the backend like our Random Forest JavaScript. It also contains the 
relevant HTML files needed to create the graphical user interface 
(GUI). 
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Results

Testing with dataset

Test set that was used consisted data from the initial dataset was 
split into a 70 to 30 ratio. To make and implement a fully functional 
extension plugin, it was tested with many various phishing website 
that are obtained and listed from phish tank website1. Since phish 
tank is a large active community, it always has new phishing websites 
being listed in a frequent manner. With this in mind, it should be 
noted that the extension plugin that has been implemented for the 
project has the capability to detect new phishing websites that are 
added to the website as well. Initial dataset contains 1105 data 
points with 30 features. For pre-processing, we are splitting the 
Dataset 70 for training and 30 for testing and selecting 17 features 
specifically that can be used without needing a 3rd party service. 
Once the pre-process is successful, the results are saved into a JSON 
format file.

Feature extraction on extension plugin

For understanding how features are classified on websites, we 
extracted portal.gre.ac.uk for the 17 features which are logged in 
google chrome console. (Figure 2) displayed below will display the 
result that is logged on the console. It should also be noted that 
the features are always stored in pair values and these values are 
encoded as 1 to -1 where 1 is phished and -1 is legitimate websites.

Figure 2: Features that are extracted from portal.
gre.ac.uk.

Classification in extension plugin GUI

Result of the classification is displayed on the extension plugin 
on the (Figure 3) below, through an indication that is displayed 

on a circle where dark green represents a legitimate website and 
crimson represents a phished website.

Figure 3: Classification result on the GUI.

Testing phase sample screenshots

The result that was displayed on the extension plugin while 
visiting a phished PayPal website obtained from Phish tank domain 
as shown in (Figure 4). As you can notice, the website has low 32% 
value of trust hence why the indication is in crimson, stating it is a 
phished website.

Figure 4: PayPal website.

Testing phase

Testing for this project was done manually by taking websites 
directly from phish tank and also from web history to find out if the 
classification is done properly without any fails. The reason why 
this was done rather than testing the model on a dataset with URLs 
was, since the existing dataset that was used in this project classifies 
URL features as either 1 as phishing, 0 as suspicious website, and 
-1 as legitimate on URL features on websites that is being viewed. 
This way, the extension provides a functionality to also predict 
new phishing websites as well because we are classifying websites 
based on URLs features rather than a complete URL. There were 
several problems that needed to be addressed after testing was 
done. When testing was completed, it came to our understanding 
that the accuracy score has dropped while porting the JSON format 
of the parameters and testing of random forest from Python to 
JavaScript. While this reason is unknown, the loss of accuracy was 
a trade with how quick the phishing detection was done on the 
browser. Another thing that came to attention was, while testing 
email URLs, URL for Gmail accounts were being prompted as a 
potential phishing website by the implemented popup feature in 
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this extension. The reason for this is uncertain but based on current 
investigation; it may be due to how certain features are tracking 
information. While this isn’t proven, it was merely an observation 
that was done by comparing the analytic result from DuckDuckGo 
tracking extension 4. For testing purposes, 5 websites were chosen 
from phish tank website to see if the model correctly classifies them 
as phishing. About 50 websites were chosen from the website and 
tested against the plugin manually, the success rate was 35/50 
while the remaining websites were falsely reported to the website. 
Due to high number of tested website, only the 5 latest websites are 
listed. Website are listed below:

a.	 https://online-billing-llc.net/993a36dc7b50be416f3...

b.	 https://kundenservice-umstellung.live/

c.	 https://shortinieri-fast.life/HwfiG

d.	 https://allegro.pl-nowe-regulamini3758.cho274.pl/6...

e.	 http://superchange.site/

Conclusion
This research illustrates and explains the development of 

a phishing detection on URLs as an extension plugin on google 
chrome which aids in privacy matters as its implemented on a 
client side with the capability to detect phishing in efficient rapid 
manner for users to be notified before accessing potential phished 
websites or entering confidential information’s. The implementing 
method of exporting Random Forest from python to JavaScript is 
the most essential part in this project as JavaScript for Random 
Forest had to be done natively with proper understanding of how 
the classifier works and performs. Many of past related work 
done by several other researchers often prefers to use website 
features with the aid of 3rd party services to provide a better 
accuracy measure when it comes to predicting phished websites. 
This won’t be a viable option for us since it results in security 
measures regarding privacy of data browsing and also it will 
be dependent on latency of the networks. As our development 
extracts features through client side, this helps vastly in providing 
fast reliable detection together with the possibility of providing 
privacy towards users browsing. But it needs to be kept in motion 
that while not using all the features provided, the accuracy result 
gets effected minimally but it does increase the functionality of the 
extension being built. This is achieved by choosing specific subset 
of features on web-pages that can be used to implement without 
huge loss of accuracy from the client-side. Exporting the classifier 
from python to JavaScript for extension plugin development, 
with the development of Random Forest in JavaScript gave us a 
foundation to provide an efficient and quick detection plugin for 
phishing as the model was represented in JSON format, together 
with scripts for classification was development with the idea of the 
understanding of timing is most vital when it comes to providing 
awareness to users. With this development, it is possible to detect 

phishing websites before the page even loads, as this gives the 
awareness to users before they decide to provide any confidential 
information into the phished website. While it was noted that using 
minimal features to adapt to client side functionality will reduce 
the accuracy score of the model, but it wasn’t severe to the point of 
many false positive results. Precision score that was calculated on 
the testing set is 0.8724385245901639. While the accuracy score 
is rather low, it didn’t have much impact on true positive results 
for detecting phished websites. It was a trade-off between loss of 
accuracy against efficient and quick detection.
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