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Introduction
Colorectal cancer (CRC) stands as one of the most prevalent and lethal malignancies 

worldwide, posing a substantial burden on global health systems. Despite significant 
advancements in diagnostic techniques and therapeutic modalities, including surgery, 
chemotherapy, radiotherapy and targeted therapies, the prognosis for advanced CRC patients 
remains challenging, often due to drug resistance, metastasis and an immunosuppressive 
tumor microenvironment (TME). Consequently, there is an urgent need to uncover novel 
mechanisms underlying CRC progression and identify innovative therapeutic targets.

The intricate interplay between cancer cells and their microenvironment, coupled with 
dysregulated cellular processes, underpins tumor development. Among these processes, 
regulated cell death (RCD) pathways have garnered considerable attention as critical 
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Abstract

Colorectal cancer (CRC) remains a significant global health challenge, necessitating the exploration 
of novel therapeutic strategies. Recent advancements in understanding regulated cell death (RCD) 
pathways have unveiled cuproptosis as a distinct form of RCD, triggered by copper accumulation and 
its direct binding to lipoylated proteins of the mitochondrial tricarboxylic acid (CAC) cycle. This review 
comprehensively synthesizes the current knowledge regarding cuproptosis, specifically focusing on its 
intricate mechanisms, its profound impact on the tumor microenvironment (TME) and immune responses, 
its utility as a prognostic and diagnostic biomarker, and the emerging therapeutic strategies leveraging 
cuproptosis in CRC. We delve into key molecular regulators such as FDX1, DLAT, and CDKN2A, elucidating 
their roles in modulating cuproptosis sensitivity and resistance. Furthermore, the immunogenic nature of 
cuproptosis, its interplay with other RCD pathways like ferroptosis, pyroptosis and disulfidptosis, and its 
influence on immune cell infiltration and function are thoroughly discussed. The review also highlights 
the development of cuproptosis-related gene and lncRNA signatures, as well as molecular subtyping, for 
predicting CRC prognosis and guiding personalized treatment. Finally, we explore innovative therapeutic 
approaches, including copper-based nanomaterials, small molecule modulators, and strategies targeting 
copper homeostasis, which hold immense promise for enhancing anti-tumor efficacy in CRC. This review 
underscores cuproptosis as a pivotal player in CRC pathophysiology and a compelling target for future 
therapeutic interventions.

Keywords: Cuproptosis; Colorectal cancer; Copper metabolism; Immunotherapy; Biomarkers; Targeted 
therapy; Tumor microenvironment; Regulated cell death
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determinants of cancer cell fate and potential therapeutic 
vulnerabilities. Beyond conventional apoptosis, a diverse array of 
RCD mechanisms, including ferroptosis, pyroptosis and necroptosis, 
have been identified, each characterized by distinct molecular 
cascades and morphological features. The strategic induction of 
these RCD pathways represents a promising avenue for cancer 
therapy.

In recent years, a novel form of RCD, termed cuproptosis, has 
emerged, fundamentally reshaping our understanding of copper’s 
role in cellular demise. Cuproptosis is distinct from other RCD 
pathways, being primarily triggered by the accumulation of copper 
ions, which directly bind to and induce the aggregation of lipoylated 
proteins within the mitochondrial tricarboxylic acid (CAC) cycle 
[1]. This copper-induced proteotoxic stress ultimately leads to 
cell death. The discovery of cuproptosis has opened new frontiers 
in cancer research, particularly given the well-established role of 
copper dyshomeostasis in various malignancies.

Copper, an essential trace element, is vital for numerous 
physiological processes, serving as a cofactor for enzymes involved 
in energy metabolism, antioxidant defense and angiogenesis. 
However, its cellular concentration must be tightly regulated, as 
both deficiency and excess can be detrimental. In the context of 
cancer, copper homeostasis is frequently perturbed, with many 
tumors exhibiting elevated copper levels, a phenomenon termed 
“cuproplasia” [2-4]. This copper accumulation can fuel tumor 
growth, angiogenesis, and metastasis, but paradoxically, it can 
also be exploited to induce cuproptosis, thereby offering a novel 
therapeutic window.

This comprehensive review aims to consolidate the burgeoning 
knowledge surrounding cuproptosis in the context of colorectal 
cancer. We will systematically delineate the molecular mechanisms 
governing cuproptosis induction and regulation, explore its 
multifaceted interactions with the CRC TME and immune system, 
discuss its potential as a prognostic and diagnostic biomarker, 
and highlight the innovative therapeutic strategies that harness 
cuproptosis to combat CRC. By synthesizing these diverse aspects, 
we seek to underscore the profound significance of cuproptosis as 
a critical determinant of CRC pathology and a promising target for 
future therapeutic interventions.

The Molecular Landscape of Cuproptosis
The discovery of cuproptosis has provided a novel perspective 

on how copper dysregulation can lead to cell death, distinct from 
other known RCD pathways. This section delves into the intricate 
molecular mechanisms underlying cuproptosis induction and 
the key regulators that govern its sensitivity and resistance in 
colorectal cancer.

Mechanism of Cuproptosis Induction
Cuproptosis is initiated by the intracellular accumulation of 

copper ions, which then directly bind to specific lipoylated proteins 

within the mitochondrial tricarboxylic acid (CAC) cycle [1]. This 
direct interaction is crucial for the execution of cuproptosis. 
The lipoylated proteins, primarily components of the pyruvate 
dehydrogenase complex (PDC) and α-ketoglutarate dehydrogenase 
complex (KGDHC), undergo aggregation upon copper binding. This 
aggregation leads to a cascade of events, including the loss of iron-
sulfur cluster proteins, ultimately resulting in proteotoxic stress 
and mitochondrial dysfunction, culminating in cell death [1].

A central player in this process is Ferredoxin 1 (FDX1), which 
plays a critical role in reducing Cu2+ to Cu1+, the more toxic form that 
drives cuproptosis. FDX1 is an essential enzyme for the lipoylation 
of mitochondrial enzymes, including DLAT (dihydrolipoamide 
S-acetyltransferase), a core component of the PDC. Therefore, 
FDX1 acts as a crucial upstream regulator, controlling both copper 
reduction and the lipoylation status of target proteins, thereby 
dictating cuproptosis sensitivity. For instance, the long non-coding 
RNA (lncRNA) PVT1 has been shown to transcriptionally activate 
FDX1, thereby promoting cuproptosis in CRC cells. Beyond its role 
in copper metabolism, FDX1 also regulates cuproptosis through 
the Hippo pathway, and its upregulation has been shown to inhibit 
CRC progression [5]. Conversely, hypoxia-induced autophagy can 
attenuate cuproptosis by reducing FDX1 levels, thereby promoting 
CRC progression and resistance to cuproptosis-inducing agents [6]. 
The importance of FDX1 extends to its ability to inhibit epithelial-
mesenchymal transition (EMT), further suppressing CRC growth 
and progression [7].

Another key enzyme directly involved in the cuproptotic 
pathway is Dihydrolipoamide S-acetyltransferase (DLAT). DLAT is 
a core component of the PDC and is one of the primaries lipoylated 
proteins targeted by copper. Its accumulation and aggregation are 
hallmarks of cuproptosis. In hepatocellular carcinoma, DLAT has 
been identified as a cuproptosis-promoting factor and a molecular 
target for the cuproptosis inducer Elesclomol [8]. Low cuproptosis 
scores, often associated with reduced DLAT activity or expression, 
predict a favorable prognosis in some cancers, highlighting its 
prognostic significance [8]. In CRC, the BCL10 protein has been 
found to regulate DLAT expression via the NF-κB pathway, thereby 
influencing CRC cell sensitivity to cuproptosis [9].

The glycolytic enzyme Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) has also been implicated in cuproptosis. 
Certain compounds, such as 4-OI, promote cuproptosis by inhibiting 
GAPDH-mediated glycolysis [10]. This suggests a metabolic link, 
where inhibition of glycolysis can sensitize cells to copper-induced 
death.

ATP7A (ATPase Copper Transporting Alpha), a copper-
transporting ATPase, plays a role in maintaining cellular copper 
homeostasis. While primarily studied in liver cancer, high ATP7A 
expression promotes tumor growth and its knockdown can induce 
cuproptosis, indicating its role in regulating intracellular copper 
levels and subsequent cuproptosis sensitivity [11].
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Key Regulators of Cuproptosis in CRC
Beyond the core machinery, a complex network of genes, 

lncRNAs, and miRNAs modulate cuproptosis sensitivity and 
resistance in CRC. Understanding these regulators is crucial for 
identifying potential therapeutic targets and prognostic biomarkers.

A.	 FDX1: As discussed, FDX1 is a central regulator. Its 
transcriptional activation by lncRNA PVT1 promotes CRC 
cuproptosis. FDX1 also inhibits EMT, thereby suppressing CRC 
growth and progression [7]. The marine natural product CHC 
has been shown to induce CRC cell cuproptosis by specifically 
targeting FDX1 [12]. Conversely, hypoxia-induced autophagy 
can attenuate cuproptosis by downregulating FDX1, 
contributing to CRC progression [6].

B.	 DLAT: In addition to its direct role in the CAC cycle, DLAT’s 
expression and activity are modulated by various factors. 
BCL10, through the NF-κB pathway, influences DLAT levels 
and thus CRC cuproptosis sensitivity [9]. DLAT, alongside 
CDKN2A, has been incorporated into prognostic models for 
CRC, highlighting its clinical relevance [13].

C.	 CDKN2A (Cyclin Dependent Kinase Inhibitor 2A): This 
tumor suppressor gene is frequently dysregulated in cancer. 
High expression of CDKN2A is observed in various tumors, 
correlating with poor prognosis and altered immune 
infiltration [14]. Importantly, CDKN2A has been shown to 
mediate cuproptosis resistance in CRC, primarily through 
its influence on glycolysis and copper homeostasis [15]. 
The lncRNA SNHG26 further exacerbates this resistance by 
degrading CDKN2A mRNA, thereby promoting CRC progression 
and facilitating CD8+ T cell immune evasion [16].

D.	 HSPA8 (Heat Shock Protein Family A Member 8): This 
chaperone protein plays a role in protein folding and stress 
response. Studies indicate a positive correlation between 
cuproptosis and disulfidptosis, another recently identified 
RCD pathway, with HSPA8 inhibiting CRC proliferation [17]. 
This suggests a complex interplay between different RCD 
mechanisms.

E.	 TIGD1 (TIR Domain Containing 1): TIGD1 has been identified 
as a novel gene regulating cuproptosis in CRC, indicating new 
avenues for understanding and targeting this pathway [18].

F.	 P4HA1 (Prolyl 4-Hydroxylase Alpha 1): Downregulation of 
P4HA1 has been shown to inhibit CRC growth and significantly 

enhance sensitivity to cuproptosis [19]. This suggests P4HA1 
as a potential therapeutic target to sensitize CRC cells to 
cuproptosis.

G.	 CEBPB (CCAAT Enhancer Binding Protein Beta): CEBPB 
has been found to reduce CRC cuproptosis sensitivity through 
activation of the PI3K/AKT/mTOR signaling pathway [20]. 
This highlights a crucial survival pathway that can counteract 
cuproptosis induction.

H.	 ACAD8 (Acyl-CoA Dehydrogenase Family Member 8): 
Reduced expression of ACAD8 has been linked to the promotion 
of CRC metastasis [21]. While its direct role in cuproptosis 
requires further elucidation, its connection to CRC progression 
suggests potential indirect involvement.

I.	 CALCOCO2 and HSPD1: Curcumin, a natural compound, has 
been shown to induce oxidative stress and cuproptosis in 
CRC cells by downregulating CALCOCO2 and HSPD1, thereby 
inhibiting CRC progression [22]. This points to specific protein 
targets for cuproptosis induction.

J.	 miR-653: MicroRNAs also play regulatory roles. miR-653 
has been shown to promote CRC proliferation by negatively 
regulating DLD (dihydrolipoamide dehydrogenase), an 
enzyme closely related to DLAT in the PDC [23]. This suggests 
that miRNAs can indirectly influence cuproptosis sensitivity by 
modulating key metabolic enzymes.

K.	 SNHG7: This lncRNA has been found to drive CRC progression 
by actively inhibiting cuproptosis, indicating its role as an 
oncogenic factor that confers resistance to copper-induced cell 
death [24].

L.	 SLC31A1 (Solute Carrier Family 31 Member 1): As a copper 
transporter, SLC31A1 is crucial for cellular copper uptake. It 
has been identified as a potential biomarker and therapeutic 
target in various tumors [25]. In esophageal cancer, TRIM21 
activates SLC31A1, leading to increased copper uptake and 
subsequent cuproptosis [26], suggesting a similar mechanism 
could be at play in CRC.

In summary, the molecular machinery of cuproptosis involves 
a delicate balance of copper uptake, reduction, and its interaction 
with lipoylated mitochondrial proteins. This process is tightly 
regulated by a diverse array of genes, lncRNAs, and miRNAs, many 
of which are dysregulated in CRC, offering multiple entry points for 
therapeutic intervention (Figure 1).
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Figure 1: The mechanism and therapeutic implications of cuproptosis in colorectal cancer.
This schematic illustrates the process of cuproptosis in colorectal cancer cells and its broader consequences. 

The pathway is initiated by the intracellular accumulation of copper ions, which, after reduction by FDX1, target 
mitochondrial lipoylated proteins (e.g., DLAT), leading to their aggregation, proteotoxic stress, and cell death. 

Cuproptosis also functions as an immunogenic cell death, releasing damage-associated molecular patterns that 
activate dendritic cells and cytotoxic T lymphocytes, and can modulate macrophage polarization, thereby reshaping 

the tumor microenvironment toward a more immunogenic state. These features highlight cuproptosis as a promising 
target for novel therapeutics, including copper-based nanomaterials and small molecule inducers, which may 

synergize with existing immunotherapies.

Cuproptosis and the Colorectal Cancer Tumor 
Microenvironment (TME)

The tumor microenvironment (TME) is a complex ecosystem 
comprising cancer cells, stromal cells, immune cells, extracellular 
matrix and signaling molecules. It profoundly influences tumor 
initiation, progression, metastasis and response to therapy. 
Emerging evidence highlights that cuproptosis is not merely a cell-
autonomous event but significantly interacts with and reshapes the 
TME, particularly the immune landscape, in colorectal cancer.

Immunogenic Nature of Cuproptosis
A critical aspect of cuproptosis, distinguishing it from non-

immunogenic forms of cell death, is its immunogenic potential. 
Cuproptosis has been recognized as an immunogenic cell death 
(ICD) pathway, capable of eliciting robust anti-tumor immune 
responses [27]. This immunogenicity stems from the induction 

of endoplasmic reticulum (ER) stress and the subsequent release 
of damage-associated molecular patterns (DAMPs) from dying 
cells. These DAMPs, such as ATP, HMGB1, and calreticulin, act as 
“danger signals” that alert and activate immune cells, particularly 
dendritic cells, leading to the priming and activation of cytotoxic 
T lymphocytes (CTLs). This activation of anti-tumor immunity is a 
highly desirable outcome in cancer therapy.

In the context of colorectal cancer, cuproptosis has been 
shown to influence the cytotoxicity of CD8+ T cells, particularly 
in microsatellite stable (MSS) colon cancer [28]. MSS CRC is often 
characterized by a “cold” TME with limited immune infiltration 
and poor response to immunotherapy. The ability of cuproptosis to 
enhance CD8+ T cell activity in this challenging subtype suggests its 
potential to convert immunologically “cold” tumors into “hot” ones, 
thereby improving immunotherapy efficacy.
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Cuproptosis and Immune Evasion/Suppression
While cuproptosis can be immunogenic, its dysregulation 

or resistance can contribute to an immunosuppressive TME, 
facilitating immune evasion in CRC. Several studies have established 
a correlation between cuproptosis-related signatures and the 
immune landscape of various cancers, including CRC.

A low cuproptosis score has been consistently associated with 
a poor prognosis and an immunosuppressive TME in multiple 
cancers [29]. Specifically in CRC, a low cuproptosis score is 
predictive of poor prognosis and is closely linked to the TME and 
reduced efficacy of immunotherapy [30]. This suggests that tumors 
resistant to cuproptosis might foster an environment that actively 
suppresses anti-tumor immunity.

Molecular patterns associated with cuproptosis have been found 
to correlate with the immune microenvironment in CRC [31]. These 
patterns can influence the infiltration, activation, and polarization 
of various immune cell subsets. For instance, cuproptosis has 
been shown to downregulate GAL3ST4, which in turn inhibits the 
polarization of M2 macrophages [32]. M2 macrophages are pro-
tumoral, promoting angiogenesis, immune suppression and tumor 
growth. By inhibiting M2 polarization, cuproptosis can shift the 
macrophage phenotype towards an anti-tumoral M1-like state, 
thereby enhancing anti-tumor immunity.

Conversely, certain factors can promote immune evasion by 
interfering with cuproptosis or related pathways. COX17, a copper 
chaperone, has been implicated in promoting immune evasion 
[33]. In contrast, DLAT, a key cuproptosis effector, has been shown 
to reverse T cell exhaustion and induce pyroptosis [33]. This 
highlights the complex and sometimes opposing roles of different 
molecules in shaping the immune response in the context of copper 
metabolism and cell death. Furthermore, the lncRNA SNHG26 
promotes CRC progression and cuproptosis resistance and critically, 
it also contributes to CD8+ T cell immune evasion by degrading 
CDKN2A mRNA [16]. This mechanism directly links cuproptosis 
resistance to immune escape, underscoring the importance of 
targeting cuproptosis to overcome immune suppression.

Interplay with other Cell Death Pathways and 
Metabolism

The cellular response to stress and the execution of cell death 
are often interconnected, involving crosstalk between different 
RCD pathways. Cuproptosis is no exception, exhibiting complex 
relationships with other forms of RCD and metabolic processes, 
which collectively shape the fate of CRC cells and the TME (Figure 
2).

Figure 2: Crosstalk between cuproptosis and other regulated cell death (RCD) pathways in colorectal cancer.
Cuproptosis interacts with multiple RCD pathways, influencing cancer cell fate and treatment responses. It 

synergizes with ferroptosis through shared inducers such as multifunctional nanoparticles; promotes pyroptosis via 
proteins like DLAT; correlates positively with disulfidptosis, potentially through HSPA8; and can be co-regulated with 
apoptosis. These interactions occur within a context of metabolic reprogramming and significantly shape the tumor 

immune landscape, offering opportunities for combination therapies targeting multiple cell death modalities.
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a)	 Disulfidptosis: Cuproptosis has been found to be positively 
correlated with disulfidptosis, another recently identified 
RCD pathway [17]. However, it is also important to note that 
disulfidptosis and cuproptosis are distinct pathways, each 
with unique prognostic value in various cancers [34]. This 
suggests that while they may share some common triggers or 
downstream effects, their core mechanisms are different.

b)	 Ferroptosis: The interplay between cuproptosis and 
ferroptosis, an iron-dependent form of RCD, is also emerging. 
Cuproptosis and ferroptosis-related gene expression profiles 
have been shown to predict CRC patient prognosis and 
immunotherapy response [35]. This suggests that targeting 
both pathways simultaneously might offer synergistic 
therapeutic benefits. Multifunctional nanoparticles have 
been developed to synergistically treat CRC via cuproptosis, 
ferroptosis and apoptosis, highlighting the potential for multi-
modal cell death induction [36].

c)	 Pyroptosis: Pyroptosis, a highly inflammatory form of RCD, also 
interacts with cuproptosis. Copper-based nanoparticles have 
been designed to regulate redox balance and inhibit glycolysis, 
synergistically enhancing both pyroptosis and cuproptosis 
for immunotherapy [37]. Furthermore, in situ sulfidation 
strategies have been developed to activate pyroptosis 
synergistically with cuproptosis for CRC immunotherapy 
[38]. The fact that DLAT can induce pyroptosis [33] further 
underscores the interconnectedness of these pathways.

d)	 Apoptosis: While distinct, cuproptosis can also synergize 
with apoptosis, the classical programmed cell death pathway. 
Natural small molecule hydrogels have been shown to inhibit 
CRC progression by regulating both cuproptosis and pan-
apoptosis [39], indicating that inducing multiple RCD pathways 
can be a powerful anti-cancer strategy.

e)	 Metabolic reprogramming: Cancer cells are characterized 
by significant metabolic reprogramming, which can influence 
their sensitivity to RCD. Cuproptosis is intrinsically linked 
to mitochondrial metabolism, particularly the CAC cycle. 
Inhibition of glycolysis by compounds like 4-OI can promote 
cuproptosis [10]. Conversely, CDKN2A mediates cuproptosis 
resistance through its influence on glycolysis and copper 
homeostasis [15]. Hypoxia-induced autophagy attenuates 
cuproptosis via FDX1 downregulation, promoting CRC 
progression [6]. These findings highlight that targeting 
metabolic vulnerabilities can sensitize CRC cells to cuproptosis.

f)	 Copper Metabolism and IBD: The intricate relationship 
between copper metabolism and cuproptosis extends to 
inflammatory bowel disease (IBD) and CRC. Copper metabolism 
and cuproptosis exhibit dual regulatory roles in IBD and CRC, 
suggesting a complex interplay between inflammation, copper 
homeostasis and cancer development [40]. This connection is 
particularly relevant given that IBD is a risk factor for CRC.

In summary, cuproptosis plays a multifaceted role in the CRC 
TME, acting as an immunogenic cell death pathway that can activate 

anti-tumor immunity, while also being influenced by and interacting 
with various immune cells, other RCD pathways and metabolic 
reprogramming. Understanding these complex interactions is 
paramount for developing effective, TME-modulating therapeutic 
strategies for CRC.

Cuproptosis as a Prognostic and Diagnostic 
Biomarker in CRC

The identification of reliable biomarkers is crucial for early 
diagnosis, accurate prognosis prediction, and guiding personalized 
therapeutic decisions in colorectal cancer. Given the integral role of 
cuproptosis in CRC pathophysiology and its profound impact on the 
TME and treatment response, cuproptosis-related signatures have 
emerged as promising candidates for prognostic and diagnostic 
biomarkers.

Gene and LncRNA Signatures
Numerous studies have leveraged high-throughput sequencing 

data to identify cuproptosis-related gene and long non-coding RNA 
(lncRNA) signatures that hold significant prognostic and diagnostic 
value in CRC.

A.	 LncRNA Models: LncRNAs are non-protein-coding RNAs 
that play diverse regulatory roles in gene expression. Several 
lncRNA-based prognostic models related to cuproptosis have 
been developed for CRC. These include models based on 10 
cuproptosis-related lncRNAs [41], lncRNA models predicting 
CRC prognosis and immunotherapy response [42], models 
for colon adenocarcinoma prognosis and diagnosis [43-45] 
and models based on four cuproptosis lncRNA features [46]. 
A comprehensive model based on 22 cuproptosis-related 
lncRNAs has also been constructed to predict CRC prognosis 
[47]. These models often integrate expression levels of 
multiple lncRNAs to generate a risk score, which can stratify 
patients into high- and low-risk groups with distinct survival 
outcomes. Similar lncRNA models have also been developed 
for other cancers, such as gastric cancer [48] and liver cancer 
[49], underscoring the broad applicability of this approach.

B.	 Gene Signatures: Beyond lncRNAs, specific cuproptosis-
related gene features have been identified as prognostic 
indicators in CRC. These gene signatures can predict CRC 
prognosis and are often correlated with immune cell 
infiltration patterns within the TME [50-52]. Key cuproptosis 
effectors like DLAT and CDKN2A have been integrated into 
CRC prognostic models, which also show associations with 
the immune microenvironment [13]. The cuproptosis index 
model, derived from the expression of core cuproptosis genes, 
has been shown to accurately predict CRC patient prognosis 
[53].

C.	 miRNA Features: MicroRNAs (miRNAs) are small non-coding 
RNAs that regulate gene expression post-transcriptionally. 
Cuproptosis-related miRNA features have been identified 
to predict CRC prognosis and sensitivity to immunotherapy. 
For example, miR-653, by negatively regulating DLD 
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(dihydrolipoamide dehydrogenase), promotes CRC 
proliferation, highlighting its role in modulating cuproptosis-
related pathways and its potential as a biomarker [23].

Molecular Subtyping and Risk Models
The heterogeneity of CRC necessitates molecular subtyping 

to guide personalized treatment. Cuproptosis-related signatures 
contribute significantly to this endeavor by enabling the 
stratification of CRC patients into distinct molecular subtypes with 
varying clinical outcomes and therapeutic responses.

a)	 Molecular subtyping: Based on cuproptosis-related genes, 
distinct CRC molecular subtypes have been identified and 
corresponding prognostic prediction models have been 
constructed [54]. These subtypes often exhibit different 
immune landscapes and sensitivities to various therapies. 
For instance, a molecular subtyping approach based on both 
cuproptosis and hypoxia signatures has been proposed to 
guide personalized pan-cancer therapy, including immune and 
anti-fibrotic treatments [55].

b)	 Risk models: Cuproptosis-related gene molecular subtypes 
and risk models have been developed to predict CRC 
patients’ responses to both immune checkpoint inhibitors 
and conventional chemotherapy [56]. This is particularly 
valuable for identifying patients who are likely to benefit from 
specific treatments, thereby avoiding ineffective therapies 
and associated toxicities. Multi-omics features, integrating 
genomic, transcriptomic and other data types related to 
cuproptosis, have also been employed to assess CRC prognosis 
and predict immunotherapy efficacy [57,58].

c)	 TME Heterogeneity: Cuproptosis modification patterns have 
been shown to correlate with the heterogeneity of the CRC 
tumor microenvironment [59]. This implies that cuproptosis-
related signatures can provide insights into the complex 
cellular composition and functional states of the TME, which 
are critical determinants of therapeutic response.

d)	 Recurrence prediction: A model based on the negative 
correlation between cuproptosis and angiogenesis has been 
developed to predict CRC recurrence [60]. This offers a novel 
tool for identifying patients at high risk of relapse, allowing for 
more aggressive follow-up or adjuvant therapies.

e)	 Interplay with other RCDs: The combined analysis of 
cuproptosis and ferroptosis-related gene expression profiles 
has also proven effective in predicting CRC patient prognosis 
and immunotherapy response [35], suggesting that integrating 
multiple RCD pathways can enhance prognostic accuracy. 
Similarly, models incorporating both disulfidptosis and 
cuproptosis lncRNAs have been developed to predict colon 
cancer prognosis [61].

Clinical relevance
The clinical utility of cuproptosis-related biomarkers extends 

to various aspects of CRC patient management.

A.	 Clinical status and immunotherapy: Cuproptosis markers 
have been shown to influence CRC clinical status and predict 
responses to immunotherapy [62]. A low cuproptosis score, 
for example, is often associated with poor prognosis and is 
relevant to the TME and immunotherapy outcomes [30].

B.	 Serum copper levels: Changes in serum copper levels in CRC 
patients have been investigated through meta-analysis [63]. 
While not a direct measure of cuproptosis, systemic copper 
dysregulation can reflect the overall copper status in the body 
and potentially correlate with tumor copper levels, offering a 
less invasive diagnostic or prognostic indicator.

C.	 Pan-cancer relevance: Cuproptosis is a recognized cancer 
treatment target that has garnered significant attention in 
various cancer types [64]. This pan-cancer relevance suggests 
that findings from CRC studies on cuproptosis biomarkers may 
be translatable to other malignancies. For instance, DLAT has 
been identified as a key prognostic and immune biomarker 
across multiple cancer types [65].

In conclusion, cuproptosis-related gene, lncRNA, and miRNA 
signatures, as well as molecular subtyping and risk models, 
represent powerful tools for predicting CRC prognosis, stratifying 
patients for personalized treatment, and monitoring disease 
progression. These biomarkers offer valuable insights into the 
underlying biology of CRC and hold immense promise for improving 
patient outcomes.

Therapeutic Strategies Targeting Cuproptosis in 
CRC

The discovery of cuproptosis has opened a new therapeutic 
window for cancer treatment, particularly in colorectal cancer, 
where copper dyshomeostasis is prevalent. Strategies aimed at 
inducing or enhancing cuproptosis, either alone or in combination 
with other therapies, are actively being explored. These approaches 
primarily fall into three categories: copper-based nanomaterials 
and ionophores, small molecule modulators, and broader strategies 
targeting copper homeostasis.

Copper-Based Nanomaterials and Ionophores
Nanotechnology offers a versatile platform for delivering 

copper ions or copper-based compounds to tumor sites, enhancing 
their therapeutic efficacy while minimizing systemic toxicity.

a)	 Enhanced immunotherapy: Nanomaterials designed to 
target cuproptosis have shown promise in enhancing the 
immunotherapeutic efficacy in CRC [66]. These nanoparticles 
can selectively deliver copper to cancer cells, inducing 
cuproptosis and subsequently activating anti-tumor immune 
responses within the TME.

b)	 Synergistic RCD induction: Copper-based nanoparticles 
can regulate cellular redox balance and inhibit glycolysis, 
synergistically enhancing both pyroptosis and cuproptosis 
for immunotherapy [37]. This multi-modal RCD induction can 
overcome resistance mechanisms and achieve more robust 
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anti-tumor effects. Similarly, multifunctional nanoparticles 
have been developed to synergistically treat CRC via 
cuproptosis, ferroptosis and apoptosis, showcasing the 
potential of combining different RCD pathways [36].

c)	 Targeted delivery and immunomodulation: Mitochondria-
targeting nanoparticles, such as Cu/TI, have been engineered 
to induce cuproptosis and concurrently downregulate PD-L1 
expression, thereby enhancing the efficacy of immunotherapy 
[67]. This dual action addresses both tumor cell killing and 
immune checkpoint blockade. Self-assembled nanoreactors 
have also been developed to induce cuproptosis specifically 
for immunotherapy applications [68].

d)	 Overcoming resistance and stemness: Copper coordination 
nanoframeworks can enhance chemo-immunotherapy 
by inhibiting tumor stemness, a major contributor to 
drug resistance and recurrence [69]. The TPGS/P-C@
Ce6 nanoplatform represents another innovative strategy, 
synergistically inducing cuproptosis and eliminating tumor 
stem cell characteristics [70]. Cu-PrIm nanozymes have been 
shown to induce apoptosis and cuproptosis, and importantly, 
degrade HIF-1α, thereby overcoming drug resistance in 
tumors [71].

e)	 Combined modalities: The integration of cuproptosis 
induction with other physical therapies is also being explored. 
A three-tier nanorocket strategy has been developed to induce 
CRC cuproptosis in conjunction with photothermal therapy, 
offering a powerful combinatorial approach [72]. Copper-
based nanotherapeutics have also been shown to enhance the 
efficacy of cancer radiotherapy [73].

f)	 Specific molecular targeting: Nanohybrids specifically 
targeting CAD (carbamoyl phosphate synthetase 2, aspartate 
transcarbamylase, and dihydroorotase) have been designed to 
inhibit CRC by inducing cuproptosis [74]. This demonstrates 
the precision with which nanotechnology can be employed 
to target specific vulnerabilities. Furthermore, fibropeptide 
nanoparticles have been developed to block ATP7B, a copper 
efflux transporter, leading to “copper-free” cuproptosis by 
disrupting copper homeostasis [75].

g)	 In situ activation: In situ sulfidation is an innovative approach 
that activates pyroptosis synergistically with cuproptosis for 
CRC immunotherapy, showcasing the potential for localized 
and highly effective therapeutic interventions [38].

Small Molecule Modulators
Beyond nanomaterials, various small molecules have been 

identified or developed that can modulate cuproptosis, offering 
direct pharmacological interventions.

A.	 Dihydroartemisinin (DHA): This artemisinin derivative has 
been shown to induce CRC cell cuproptosis by inhibiting LOXL2-
mediated glycerophospholipid metabolism reprogramming 
[76]. This highlights a metabolic vulnerability that can be 
exploited to trigger cuproptosis.

B.	 Curcumin: This natural polyphenol acts as a copper 
ionophore, facilitating copper entry into cells and upregulating 
cuproptosis mediators [77]. Conversely, glutathione can inhibit 
this process, indicating the importance of redox balance. 
Curcumin also inhibits CRC by downregulating CALCOCO2 and 
HSPD1, leading to oxidative stress and cuproptosis [22].

C.	 4-OI: As mentioned earlier, 4-OI promotes cuproptosis by 
inhibiting GAPDH glycolysis [10], suggesting that targeting 
specific metabolic enzymes can induce cuproptosis.

D.	 Natural small molecule hydrogels: These innovative 
platforms can inhibit CRC progression by regulating both 
cuproptosis and pan-apoptosis, offering a multi-pronged 
approach to cell death induction [39].

E.	 Targeting programmed cell death: The development of 
small molecules specifically designed to target programmed 
cell death pathways, including cuproptosis, is a growing area 
of research for CRC treatment [78].

F.	 Marine natural product CHC: This compound has been 
shown to induce CRC cell cuproptosis by specifically targeting 
FDX1 [12], further validating FDX1 as a druggable target.

Targeting Anti-Aging Genes: Modulation of Sirtuin 
1

Anti-aging genes play a central role in determining cell fate, 
metabolic regulation, and stress resistance. Among them, the 
class III histone deacetylase Sirtuin 1 (SIRT1) has been the most 
extensively studied. SIRT1 exerts its deacetylase activity in an 
NAD⁺-dependent manner and is involved in the pathogenesis of 
various tumors, including colorectal cancer [79]. Accumulating 
evidence indicates that SIRT1 regulates key processes in CRC 
progression, such as apoptosis, autophagy, proliferation, migration, 
invasion, metastasis, oxidative stress, resistance to chemotherapy 
and radiotherapy, immune evasion and metabolic reprogramming 
[80]. Therefore, SIRT1 has emerged as a promising therapeutic 
target in CRC.

In the context of cuproptosis, the modulation of SIRT1 
demonstrates dual potential. On the one hand, as a key sensor 
of cellular stress and metabolism, SIRT1 activity may influence 
mitochondrial function, energy metabolism and redox homeostasis, 
thereby indirectly regulating cellular sensitivity to copper ion 
accumulation and the acetylation status of key cuproptosis-related 
proteins (e.g., FDX1, DLAT). For instance, SIRT1-mediated metabolic 
reprogramming may alter the energy supply pattern of cancer cells, 
affecting their ability to cope with copper-induced mitochondrial 
proteotoxic stress. On the other hand, the role of SIRT1 in immune 
regulation [80] suggests that its inhibitors may synergize with 
cuproptosis inducers by disrupting tumor immune evasion 
mechanisms. As an immunogenic cell death modality, cuproptosis-
induced release of tumor antigens and immune activation may 
combine with the improved immune microenvironment resulting 
from SIRT1 inhibition to jointly enhance anti-tumor immune 
responses.
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Preclinical studies have shown promising prospects for SIRT1 
inhibitors as monotherapy or in combination with chemotherapy, 
radiotherapy and immunotherapy in CRC [80]. For example, 
SIRT1 inhibitors may enhance the sensitivity of cancer cells to 
conventional chemotherapeutic agents by interfering with DNA 
repair capacity, inducing apoptosis, or senescence. Meanwhile, 
given the correlation between SIRT1 levels and metabolic diseases 
as well as neurodegenerative disorders, its potential as a plasma 
diagnostic biomarker warrants further exploration in CRC [81]. 
Integrating SIRT1 activity modulation into cuproptosis-targeted 
therapeutic strategies provides a new direction for developing 
more precise combination therapies. Future research should 
further elucidate the specific molecular mechanisms of SIRT1 in 
regulating cuproptosis in CRC and evaluate the application value 
of SIRT1 activators versus inhibitors in different CRC molecular 
subtypes and therapeutic contexts.

Targeting copper homeostasis
Given that cuproptosis is fundamentally driven by copper 

accumulation, strategies that manipulate cellular copper 
homeostasis represent a direct approach to inducing this form of 
RCD.

a)	 Exploiting copper dyshomeostasis: Colorectal cancer cells 
often exhibit dysregulated copper metabolism, with increased 
copper uptake and accumulation (cuproplasia) [3,4]. This 
inherent vulnerability can be exploited by administering 
copper-chelating agents (to reduce copper for specific 
contexts) or copper-ionophores (to increase intracellular 
copper to toxic levels), depending on the specific tumor’s 
copper status and the desired outcome.

b)	 Modulating copper transporters: Targeting copper 
transporters like ATP7A [11] or SLC31A1 [25] can alter 
intracellular copper levels and thereby modulate cuproptosis 
sensitivity. Inhibiting copper efflux or enhancing copper influx 
could sensitize CRC cells to cuproptosis.

In summary, the therapeutic landscape for CRC is rapidly 
evolving with the integration of cuproptosis-targeting strategies. 
From sophisticated copper-based nanomaterials that offer 
precise delivery and synergistic RCD induction to small molecule 
modulators that directly interfere with cuproptosis pathways, and 
broader approaches that manipulate copper homeostasis, these 
innovations hold significant promise for improving the efficacy of 
CRC treatment.

Conclusion
The emergence of cuproptosis as a distinct form of regulated 

cell death has profoundly impacted our understanding of copper’s 
role in cancer biology, particularly in colorectal cancer (CRC). This 
comprehensive review has highlighted the intricate molecular 
mechanisms governing cuproptosis, its multifaceted interactions 
with the tumor microenvironment (TME) and immune system, its 
utility as a prognostic and diagnostic biomarker, and the innovative 
therapeutic strategies leveraging this pathway in CRC.

We have elucidated that cuproptosis is triggered by copper 
accumulation, leading to the aggregation of lipoylated proteins in 
the mitochondrial tricarboxylic acid cycle, primarily mediated by 
key regulators such as FDX1 and DLAT [1,8]. The sensitivity to 
cuproptosis is finely tuned by a complex network of genes (e.g., 
CDKN2A, HSPA8, TIGD1), lncRNAs (e.g., PVT1, SNHG26, SNHG7), 
and miRNAs (e.g., miR-653), many of which are dysregulated in 
CRC, offering multiple points for therapeutic intervention [14,16-
18,23,24].

Crucially, cuproptosis is not merely a cell-autonomous event but 
actively shapes the CRC TME. Its immunogenic nature, characterized 
by the induction of ER stress and DAMP release, can activate robust 
anti-tumor immunity, influencing CD8+ T cell cytotoxicity in MSS 
colon cancer [27,28]. Conversely, resistance to cuproptosis or its 
dysregulation can contribute to an immunosuppressive TME, often 
correlating with poor prognosis [29,30]. The intricate crosstalk 
between cuproptosis and other RCD pathways, such as ferroptosis, 
pyroptosis and disulfidptosis, as well as its links to metabolic 
reprogramming, further underscore its central role in determining 
CRC cell fate and immune responses [35,37,17,10].

The clinical relevance of cuproptosis is evident in its potential 
as a prognostic and diagnostic biomarker. Cuproptosis-related gene 
and lncRNA signatures, alongside molecular subtyping and risk 
models, have demonstrated significant predictive power for CRC 
prognosis, immune infiltration and response to immunotherapy 
[41,42,51,53,56]. These biomarkers offer valuable tools for patient 
stratification and guiding personalized treatment strategies.

The therapeutic landscape for CRC is being revolutionized 
by strategies that harness cuproptosis. Innovative approaches, 
including copper-based nanomaterials for targeted delivery and 
synergistic RCD induction (e.g., with pyroptosis, ferroptosis, or 
apoptosis) [66,37,36], hold immense promise for enhancing 
anti-tumor efficacy and overcoming resistance. Small molecule 
modulators like dihydroartemisinin and curcumin, which directly 
interfere with cuproptosis pathways, also represent compelling 
therapeutic avenues [76,77]. Furthermore, strategies that directly 
target copper homeostasis, exploiting the inherent copper 
dysregulation in CRC, offer a fundamental approach to inducing 
cuproptosis [3,4].

In conclusion, cuproptosis has emerged as a pivotal player in the 
pathophysiology of colorectal cancer, influencing cell death, immune 
responses and therapeutic outcomes. Its intricate mechanisms and 
widespread implications make it a compelling target for novel 
diagnostic and therapeutic interventions. Continued research into 
the precise molecular underpinnings of cuproptosis, its complex 
interactions within the TME and the development of highly specific 
and effective cuproptosis-modulating agents will be crucial for 
translating these exciting discoveries into tangible clinical benefits 
for CRC patients.
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