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Introduction
Vocal Cord Leukoplakia (VCL) is a clinical diagnosis indicating abnormal white patches 

or plaques on the vocal mucosa that cannot be classified clinically as any other conditions 
[1]. It is believed that VCL is a chronic inflammatory response caused by smoking, drinking 
and Gastroesophageal Reflux (GER) or physical factors such as contralateral vocal cord 
polyps. However, the influence of infectious factors such as Human Papilloma Virus (HPV) 
remains controversial. In addition, there may be genetic susceptibility because in some cases 
environmental factors cannot be determined [2,3].

White light laryngoscope combined with biopsy is the standard diagnostic procedure for 
evaluating VCL [2].Under the laryngoscope, VCL can be observed as white patches covering 
on the surface of vocal cords, which can be classified pathologically into 5 grades, benign 
hyperplasia, mild dysplasia, moderate dysplasia, severe dysplasia, and epithelial cancer 
according to the World Health Organization (WHO) pathological classification system (Version 
2006) [4]. Furthermore, the 2017 WHO Blue Book simplifies the five pathological grade of 
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VCL into low-risk (squamous hyperplasia, mild dysplasia) and high-
risk groups (previous categories moderate and severe dysplasia, 
epithelial cancer) [5]. The malignant transformation of high-risk 
VCL is 20%. In general, VCL is treated conservatively for 1-3 months 
at the first diagnosis [6]. If conservative treatment is not effective, 
an excisional biopsy is required. The depth of resection is adjusted 
according to the infiltration[6]. The Sequelae of surgery is related 
to the extent of surgical resection. If high-risk VCL can be accurately 
identified early, the scope of surgical resection may be smaller, and 
the sequelae are more likely to be recovered.

Recently, it has been reported that laryngoscopy may be used 
to detect high-risk leukoplakia based on the leukoplakia thickness, 
surface type, degree of inflammation of the lesion, and patient 
age, achieving a sensitivity of 80.4% and a specificity of 81.5% 
[7]. Different laryngoscopy techniques are employed to detect 
high-risk VCL, such as autofluorescence imaging, Narrow Band 
Imaging (NBI), laryngostroboscopic imaging, with the sensitivity 
between 82.6~92%, and the specificity is between 78%~92.8%, 
which varied depends on physicians’ experience and the nature 
of leukoplakia with ICC (inter-observers’ correlation) between 0.6 
and 0.85 [8-10].

Texture analysis has been widely used in geophysics, agriculture, 
materials, and other scientific fields as well as in medical image 
analysis from gray-scale CT, MRI, ultrasound [11-14] to color 
endoscopic images [15-18]. Recently, texture analysis machine-
learning , or radiomics, has gained great attention that links the 
imaging textures to clinical findings by using machine-learning 
models, which is expected to more objectively identify the tumor 
imaging features that correlates to biologic subgroups and subtypes 
of lesions [19]. To overcome the low performance of regular 
laryngoscopy in differentiation of malignant and precancerous 
lesions, Unger et al employed a high-speed stroboscopic 
laryngoscopy yielding 4,000 images per second and applied wavelet 
texture analysis using Support Vector Machine (SVM) to reveal the 
vocal cord dynamic patterns affected by abnormal vocal cords 
[20]. Such a high-speed stroboscope laryngoscopy is uncommon 
in clinical practice. To improve the accuracy of VCL diagnosis in 
regular white light laryngoscope images, Song et al compared the 
GLCM (Gray-Level Co-Occurrence Matrix) textures and observed 
that entropy and variance had the sensitivity and specificity of over 
80% in differentiation of benign and malignant lesions [21]. Ren 
et al developed a deep-learning technique to automatically detect 
vocal cord lesions on white light laryngoscope [22]. Their study 
focused on the detection of VCL lesions without the classification 
of benign and malignant. The aim of this study was to investigate 
the machine-learning models using texture analysis of white light 
laryngoscope images for risk stratification of VCL, and to compare 
the performances of difference machine-learning models and 
clinician visual assessment.

Materials and methods
This study was approved by the Institutional Review Board 

and was conducted in accordance with the relevant guidelines and 

regulations. Informed consent was waived by the ethics committee 
due to the retrospective nature of this study.

Study cohort
Patients diagnosed with VCL who underwent laryngoscopy 

examination between January 1, 2013, to June 1, 2023 were 
retrospectively collected. The data comes from two laryngoscopy 
examination centers, the Peking University First Hospital and 
Beijing Chaoyang Hospital of Capital Medical University. The 
patient inclusion criteria were: (1) Adult patients ≥18 years old; 
(2) Laryngoscope images were available, and (3) Pathological 
diagnosis of biopsy and/or surgery was performed. The exclusion 
criteria were: (1) No pathological biopsy was performed within 
3 months after the diagnosis; (2) Previous vocal cord surgery or 
invasive vocal cord examination was performed.

As shown in Figure 1, a total of 846 patients diagnosed with 
leukoplakia were enrolled in the study, of which 462 patients who 
met the criteria were finally selected. The patients were divided 
into training groups and testing groups. To maintain the balance 
of training dataset, we included 140 cases (50%) of high-grade 
dysplasia and 140 cases of low-grade dysplasia (50%), In the 
testing group, there were 159 high-grade dysplasia (87.4%), and 
30 low-grade dysplasia (12.6%).

 Figure 1: Flow diagram shows patient selection.

Pathologic diagnosis
VCL is pathologically classified into two subgroups: low-risk 

dysplasia (squamous hyperplasia, and mild dysplasia) and high-risk 
dysplasia (moderate and severe dysplasia, and carcinoma in situ) 
according to the WHO pathological grading criteria (Version 2017) 
[5]. The pathological manifestations of low-grade dysplasia are 
low malignant potential with morphology ranging from squamous 
hyperplasia to an augmentation of basal/parabasal cells, up to 
the middle of the epithelial thickness, and upper part unchanged. 
The pathological manifestations of high-grade dysplasia are 
high malignant potential including atypical epithelial cells, with 
morphological thickening at least from half of lower epithelium up 
to the entire epithelial thickness. 
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Architectural criteria include abnormal maturation; variable 
degrees of disordered stratification and polarity; altered epithelial 
cells occupy from half to the whole epithelial thickness; variable 
degree of irregularly shaped rete ridges; intact basement 
membrane; no stromal changes. Cytological criteria include 
cellular and nuclear atypias; marked variations in size and shape; 
hyperchromasia; nucleoli increased in number and size; mitoses 
increased throughout the epithelium, with or without atypical 
forms; dyskeratotic and apoptotic cells frequent throughout the 
epithelium [5]. The pathological grading was determined by a 
pathologist and a laryngologist in censuses (H.Z, T.L)

Laryngoscopy examination and ROI delineation
All laryngoscopy examinations were performed by experienced 

otolaryngologists using a flexible 2.9mm laryngoscope (Olympus 
Medical Systems, Tokyo, Japan). The collected laryngeal images 
were taken under white light conditions. Two clinicians (Z.L, M.L) 
reviewed the laryngoscopy images and selected a clear and glare-
free image from about 10 VCL laryngoscope images for each patient. 
The vocal cord in the picture needs to be in the middle, showing all 
the vocal cord structure, the vocal cords are located in the abductor 
state.

The Region of Interest (ROI) of VCL were manually delineated 
on laryngoscope images by three otolaryngologists (Z.L, M.L, Z.Z). 
The final contour of each ROI was determined by the consensus of 
three otolaryngologists (Figure 2).

Figure 2: ROIs of Vocal Cord Leukoplakia (VCL). (a) 
56-years-old male with severe dysplasia of the right 

vocal cord. (b) 48-years-old male with squamous 
hyperplasia of the right vocal cord. (c) 63-years-old 
male with a pathological diagnosis of squamous cell 

carcinoma of the left vocal cord.

Feature extraction 
First, the laryngoscope images were decomposed into three 

different color spaces: HSV, RGB and CIELAB by using IMAGE J 
(Softonic International, Barcelona, Spain). The HSV color space 
is hue (Hue), Saturation (Sat), and Value (Val). The RGD color 
space is Red, Green, Blue. The CIE Lab color space is defined as 
brightness (L), a and b are two color channels. Thus, each image 
was decomposed into 9 channel images (Figure 3).

Figure 3: On the left is the original image, on the 
right is the color space decomposition image. In the 
right image, (a-c) The decomposition diagram of RGB 
color space is red (a), green (b), and blue (c) channels 
in sequence. (d-f) The decomposition diagram of HSV 
color space is Hue(d), Sat(e), and Val(f) channels. (g-i) 
The decomposition diagram of CIELAB color space is 
lightness(g), “a”channel is red-green space (h), and 

“b”channel is blue-yellow space (i).

A set of 56 textures were extracted in each ROI on each color 
channel of the images including histogram features (n=13), Gray 
Level Co-Occurrence Matrix (GLCM) features (n=21), Gray Level 
Run-Length Matrix (GLRLM) features (n=11), and gray level zone 
size matrix (GLZSM ) features (n=11). This resulted in a total of 504 
texture features for each laryngoscope images. 

Model training and testing 
3DQI software platform (3D Quantitative Imaging Laboratory, 

Massachusetts General Hospital and Harvard Medical School) 
was utilized to training and testing of machine-learning models of 
texture analysis, including feature selection, model training, and 
model validation. 

Feature selection and models
Table 1: Technical parameters of 5 machine-learning 
classifiers.

AI Models Parameters

RF mtree=2, ntree=100

SVM kernel type=radial, cost=1, Gamma=0

NB laplace=0

NN

Activation function was choosed bipolar sigmod, sigmod ’s 
alpha value=1, 

max iterations=1000, n of middle lay=20, learning 
rate=0.1

XGB Booster=gbtree, maxdepth=6, n_estimator=100

To build the model for classification of low-risk and high-risk 
groups, we performed Boruta algorithm [23] to select important 
features related to the risk stratification. In this study, those 
selected features were sorted in descending order of importance. 
To maintain consistency and avoid overfitting, only the top 10 
features, if any, were used to train the machine-learning models. A 
higher place of a feature among selected features indicates greater 
significance and classification value of the feature for the machine-
learning model created. To compare the performance of different 
machine-learning models, we trained five models including 
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Random Forest (RF), Support Vector Machine (SVM), Naïve Bayes 
(NB)Neural Network (NN) and eXtreme Gradient Boosting (XGB). 
Their technical parameters are listed in Table1. 

Training, validation and testing
The training, validation, and testing of five machine learning 

models were conducted on the 3DQI platform. The entire dataset 
was separated into the training and testing images: 280 cases for 
training including 140 cases of low-grade leukoplakia and 140 
cases of high-grade leukoplakia, and 182 cases for testing including 
23 low-grade cases and 159 high-grade cases.

We applied 10-fold cross-validation method to train and 
validate the performance of each model. We also used testing 
dataset to evaluate the performances of the trained models. Two 
laryngologists delivered Clinical Visual Assessments (CVAs) of 
dataset images. Clinicians delivered assessments of images without 
time constraint and were blinded to the pathological results of the 
patients. The data flow of the study is shown in Figure 4.

 Figure 4: The flow diagram of the dataset creation.

Statistical Analysis
Statistical analysis was conducted by 3DQI platform. 

Quantitative variables were showed as mean ± SD. Intraclass 
Correlation Coefficient (ICC) was analyzed for estimating the inter-
observer agreements between different models, which was defined 
as good consistency between 0.75 and 1, fair consistency between 
0.4 and 0.75, and poor under 0.4. Receiver Operating Characteristic 
(ROC) curve was used to evaluate the performance of the models. 
The Area Under the Curve (AUC)≥0.8 was considered a good 
performance. Two ROCs were compared using DeLong et al. [24] 
method. A p-value <0.05 was considered statistically significant.

Result
Patient cohort

In the training dataset, the mean age of patients was 59±10.4 
years, range from 31-86 years, and 266 men (95.0%) and 14 women 
(5.0%). In the testing group, with The mean age of 61±8.9 years, 
range from 41-78 years, and 179 males (98.4%) and 3 females (1.7 
%). There was no significant difference in age and gender between 
the two groups(p>0.05).

Feature selection
Thirty important features were selected by Boruta algorithm, 

and we used the top ten important features to establish machine-
learning models. The top ten important features were calc_energy 
(Sat), calc_meanDeviation (Red), calc_meanDeviation (Val), glrlm_
GLN (Sat), glszm_HISAE (Blue), glcm_inverseVariance (a_star), 
glszm_IV (Sat), glszm_SZV (Sat), glcm_inverseVariance (b_star) and 
glrlm_SRHGLE (Blue). Figure 5 shows the heatmap and box plot of 
the selected top 10 features in the low- and high-grade groups of 
VCL.

 Figure 5:(a) Heatmap of top ten features on training 
dataset. (b) Box plot of filtered features between low-

grade(L) and high-grade groups(H) in training and 
testing dataset.
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 Figure 5: ROC curves of AI models and clinicians’ CVAs in training datasets. (a) ROC curves of AI models. (b) ROC 
curves of clinician’s’ CVAs in training datasets. (c) ROC curves of AI models and (d) clinician’s’ CVAs in testing 

datasets. (AUC=the area under the ROC curve).

Table 2: The validation/ performance performances of 5 machine learning models.

Dataset AI Model AUC 95% CI Sensitivity (%) Specificity (%) Accuracy 95% CI

Training

RF 0.966 0.960~0.971 90.85 90.92 0.908 0.896~ 0.918

SVM 0.957 0.949~0.964 91.21 89.71 0.902 0.890~0.912

NB 0.955 0.947~0.962 90.28 88.71 0.871 0.860~0.885

NN 0.935 0.925~0.943 87.14 87.07 0.867 0.858~0.883

XGB 0.962 0.955~0.968 90.6 91.14 0.903 0.892~0.914

Testing

RF 0.984 0.969 ~ 0.999 96.86 86.96 0.956 0.915 ~ 0.981

SVM 0.981 0.964 ~ 0.998 92.45 91.3 0.923 0.874~ 0.957

NB 0.988 0.976 ~ 1.000 90.57 95.65 0.912 0.861~ 0.949

NN 0.949 0.890 ~ 1.000 92.45 91.3 0.923 0.874~ 0.957

XGB 0.972 0.942 ~ 1.000 93.08 86.96 0.923 0.874~ 0.957

Model building and validation
Table 3: The comparison of validation ROCs of 5 models in 
training datasets in training/ testing datasets.

Dataset AI model

 RF SVM NB NN

Training

SVM P <0.01    

NB P <0.01 P=0.14  

NN P<0.01 P<0.01 P <0.01  

XGB P=0.01 P=0.02 P <0.01 P <0.01

Testing

SVM P=0.33    

NB P=0.53 P=0.29  

NN P=0.16 P=0.18 P=0.15  

XGB P=0.22 P=0.40 P=0.19 P=0.36

In training datasets, the AUCs of the five machine learning models 
of RF, SVM, NB, NN and XGB, were 0.966 (95%CI:0.960~0.971), 
0.957 (95%CI:0.949~0.964), 0.955 (95%CI:0.947~0.962), 
0.935 (95%CI:0.925~0.943) and 0.962 (95%CI:0.955~0.968), 
respectively. Of which, RF achieved the best performance. The 
detailed performances of these models are listed in Table 2. The 
ROCs of these five models shown in Figure 6a were statistically 
significantly different (P<0.05) except between SVM and NB 
(p=0.14), see Table 3.

Figure 6b shows the ROCs of CVAs by two clinicians. The AUC 
of clincans1 and clincans2 were 0.612 (95%CI:0.552 to 0.669), 
and 0.722 (95%CI:0.666 to 0.774). The AUCs of the two CVAs 
were significant (p<0.01). ICC of CVAs between two clinicians was 
0.396. The ROCs of CVA were significantly different compared with 
machine-learning models (p <0.05). 
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Testing
In the testing datasets, the AUCs of these five machine 

learning models of RF, SVM, NB, NN and XGB were 0.984 
(95%CI:0.969~0.999), 0.981 (95%CI:0.964~0.998), 0.988 
(95%CI:0.976~1.000), 0.949 (95%CI: 0.890~1.000) and 0.972 
(95%CI:0.942~1.000), respectively. Table 2 lists the detailed 
performance. The difference among these 5 models were not 
significant (p>0.05), see Table3. The ROCs of these five models are 
shown in Figure 6c.

The AUC of clincans1 and clincans2 were 0.631 (95%CI:0.557 
to 0.702), 0.752(95%CI:0.683 to 0.813), see Figure 6d, with 
significant difference (p=0.031). ICC of CVAs by two clinicians was 
0.649. The CVAs were significantly different from machine learning 
models (p <0.05).

Discussion
Texture analysis

There are differences in the absorption of light by human 
tissues. Different wavelengths of light have different penetrating 
capabilities to tissues. Therefore, tissue structures of different 
depths show different colors [25]. Using this principle, endoscopic 
techniques such as NBI, FACE and I-scan can highlight the malignant 
tissue structure of a lesion [26-28]. Therefore, there may be a 
connection between the texture characteristics of different color 
spaces and the structure of the lesion. In this study, we calculated 
textures in nine color channels of three color spaces include HSV, 
RGB and CIELAB. Freitas et al applied color space decomposition 
to improve the recognition ability of the cystoscope [29]. Vasileios 
et al used color space decomposition to extract texture features 
to automatically distinguish normal tissues and ulcers on capsule 
endoscopic images, mean accuracy>95%) [30].

In this study, we demonstrated that the pathological 
classification of vocal cord leukoplakia can be distinguished by 
textures extracted from three color spaces decomposed from 
ordinary white light laryngoscope images. The features selected by 
machine learning are mainly concentrated in the two channels of 
Sat and Blue. The saturation channel screened out the second-order 
features to indicate the color of the lesion. The pathological high-
risk group has a value greater than the low-risk group. Considering 
that the internal color of the leukoplakia with a high pathological 
level has higher color saturation and more dramatic changes. It 
may be related to the disorder of the internal structure of high-
grade leukoplakia, which presents more color changes, which is 
similar to the color changes of malignant lesions in the research 
of Rzepakowska A, et al. [31]. The features screened in the blue 
channel all show that the value of the high-risk group is low. 

This principle is similar to narrow-band imaging. Malignant 
lesions have an increased absorption of blue and green light due 
to superficial vascular proliferation. They appear reddish-brown in 
the narrow band, and benign lesions are blue green [25]. However, 
the naked eye cannot perceive this change in ordinary white-light 
endoscopic images. This feature is highlighted by the use of color 
decomposition technology. In this study, the poor-quality pictures 

were manually excluded when selecting images, and the images 
were from the same laryngoscopy machine at one institute, which 
ensured highly consistent quality of the dataset. In future, we will 
collect different white light laryngoscopic images from multiple 
institutes. Although the color space dissolution may reduce the 
image variability caused by lighting, some of the important textures 
selected in this study were from the color channels that may be 
affected by the lighting. We will employ image normalization before 
feature extraction to improve the feature stability, adding color 
correlations and Zernike moments to extract image features.

Machine-learning and comparing with clinicians
In this study, five Machine-Learning (ML) models demonstrated 

significantly good performance with AUC>0.9. RF can handle high-
dimensional data, the generalization ability of the model is strong, 
and the model training results are highly accurate. As a classifier 
with superior performance, RF is used in various applications 
[16]. In this study, RF models in the training dataset outperformed 
other ML models. We used balanced dataset to reduce over-fitting 
in training procedures. However, the outperformance between RF 
and other models were not significant in testing dataset, which may 
be caused by the unbalanced test dataset. 

The performances of the five ML models were significantly 
better than the performances of clinicians’ CVA. The accuracy of 
ML model was also better than that of clinicians’, which can provide 
a reliable and accurate basis for clinicians to choose treatment 
options. As to high-risk patients, biopsy or surgery can be performed 
without waiting 1-3 months of conservative treatment. In this 
study, The CVAs of the two clinicians have lower accuracy. Clinician 
2 is a senior laryngologist, and his CVAs are more accurate than 
that of Clinician 1, indicating the clinical experience is helpful for 
making correct clinical diagnosis. Fang et al. classification vocal fold 
leukoplakia by clinical scoring (including age, sex, smoking history 
and CVAs). The model had an AUC of 0.86, the sensitivity of 80.4%, 
and the specificity of 81.5%. The CVAs of their model were judged 
by multiple laryngologists [32]. However, the performance of their 
model is still lower than that of our machine learning models.

The inter-observer’s variability in manual-drawing ROIs shows 
slight impacts to the performance of ML models. In an experiment, 
the expanded ROI resulted in very similar results. According to our 
data [supplementary materials], dilated ROIs will achieve more 
stable results than those of reduced ROIs. The limitations of this 
research included the number of samples of this study was still 
relatively small, and it was not suitable for establishing a deep-
learning model. In the follow-up research, as the amount of data 
increases. We plan to use color texture technology combined 
with deep learning technology to enrich 3DQI’s functions in 
automatic drawing [33]. In the follow-up research, the machine 
can automatically segment the ROI to further reduce the difference 
caused by manual drawing.

Conclusion
The five machine-learning models have excellent performances 

in predicting the pathological grade of VCL, which outperformed 
the clinician’s CVAs. The ML models could serve as a reliable and 
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conveniently tool in laryngoscopy for the risk stratification and 
clinical managements of patients with VCLs, suggesting great 
potentials for clinical applications.
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