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Introduction
Malignant transformation is the process by which cancerous characteristics are acquired 

by cells. This might happen either directly as a primary process in healthy tissue or indirectly 
as the malignant degeneration of an earlier benign tumour.

Primary malignant transformation, often known as tumorigenesis, has a wide range of 
reasons. The majority of human malignancies in the United States are brought on by outside 
sources, most of which can be avoided [1-3]. These components were assembled by Doll & 
Peto [1] in 1981and represent prevalent underlying causes of cancer symptoms.

Mutations

Cancers are caused by genetic mutations acquired either by inheritance or somatic DNA 
over time [4]. These mutations alter protein coding genes (exome) and confer no selective 
growth advantage. Cancers also have genome instability, with an average number of DNA 
sequence mutations in the entire genome of breast cancer tissue of 20,000 [5] and 80,000 in 
an average melanoma [6].

Epigenetic alterations

Transcription silencing: Cancers have a higher frequency of epigenetic transcription 
silencing (caused by promoter hypermethylation of CpG islands) than mutations [7]. In colon 
tumours, there are 600 to 800 heavily methylated CpG islands in promoters of genes, which 
fully silence gene expression, just as a mutation would [7]. In addition, the promoters of 
several hundred genes are hypomethylated (under-methylated), which makes these genes 
active when they should be inactive [8].

Post-transcriptional silencing: MicroRNAs (miRNAs) are also involved in epigenetic 
modifications. The transcriptional activity of protein-coding genes is regulated by these 
tiny non-coding RNA molecules in mammals to a degree of about 60% [9]. In cancer cells, 
abnormal DNA methylation of the promoter regions governing miRNA genes’ expression 
results in their epigenetic suppression or overexpression [10-12]. In breast cancer cells, it 
was discovered that about one-third of the miRNA promoters active in healthy mammary cells 
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were hypermethylated, while other microRNA promoters were 
hypomethylated [13-14]. BRCA1 is generally produced in breast 
and other tissue cells, where it aids in the repair of broken DNA or, 
in the event that DNA repair is not possible, the destruction of cells 
[15-16].

Only 3-8% of all breast cancer patients have a BRCA1 or BRCA2 
mutation. The majority of high grade, ductal breast tumours exhibit 
diminished or undetectable BRCA1 expression [17]. Additionally, 
BRCA1 is inhibited by miR-182, miR-146a, and/or miR-146b-5p, 
whose overexpression renders BRCA1 inactive [18]. The target 
mRNA is either translated into silence or degraded as a result of 
complementary binding to specific sequences in the target gene’s 
three primary untranslated regions. This process is known as post-
transcriptional regulation by microRNA [19]. The RNA-Induced 
Silencing Complex (RISC) implements the mechanism of target 
mRNA degradation or translational silencing.

DNA repair gene silencing: The RNA-Induced Silencing 
Complex (RISC) implements the mechanism of target mRNA 
degradation or translational silencing. Cancers of the colon, 
head and neck, stomach, prostate, breast, thyroid, non-Hodgkin 
lymphoma, chondrosarcoma, and osteosarcoma all have WRN 
hypermethylation, which ranges from 11% to 38%.

Similar to a germ-line mutation in a DNA repair gene, such 
silence probably predisposes the cell and any offspring to 
developing cancer [20]. Another review [21] notes that DNA repair 
is likely to be insufficient and DNA damage can build up when a 
gene required for DNA repair is epigenetically silenced. Increased 
DNA damage can result in more mistakes being made during DNA 
synthesis, which can result in cancer-causing mutations.

Induced by heavy metals

When present in amounts above a particular threshold, the 
heavy metals cadmium, arsenic, and nickel are all cancer-causing 
[22]. It is well known that cadmium causes cancer, presumably 
through slowing down DNA repair. Five DNA repair genes were 
examined in rats by Lei et al. [23] after the rats were exposed to 
low amounts of cadmium. They discovered that three DNA repair 
genes-XRCC1, OGG1, and ERCC1-necessary for base excision repair, 
nucleotide excision repair, and nucleoside excision repair-were 
repressed by cadmium. The methylation of these genes’ promoters 
did not cause their repression.

Bhattacharjee et al. [24] reviewed the carcinogenicity of arsenic. 
They provided an overview of how arsenic and its metabolites 
contribute to oxidative stress and DNA damage. Arsenic not only 
damages DNA, but it also suppresses a number of DNA repair 
enzymes in the base excision repair route as well as the nucleotide 
excision repair pathway. Further reviews of the involvement of 
arsenic in telomere dysfunction, mitotic arrest, faulty apoptosis, 
changed promoter methylation, and altered miRNA expression 
were provided by Bhattacharjee et al. Each of these modifications 
may have a role in the development of cancer caused by arsenic.

Because nickel compounds are cancer-causing, occupational 
exposure to nickel is linked to a higher risk of developing lung 
and nasal malignancies [25]. Nickel compounds have only 
modest mutagenesis potential, but they significantly change the 
transcriptional landscape of exposed people’s DNA [26]. Eight 
employees of a nickel refinery and ten non-exposed employees’ 
peripheral blood mononuclear cells were studied by Arita et al. [27]. 
With 770 up-regulated genes and 1986 down-regulated genes, they 
discovered 2756 genes that were differentially expressed [28]. DNA 
repair genes were repressed in nickel refinery workers, whereas 
two were over expressed. DNA repair genes were significantly 
overrepresented among the differentially expressed genes. The 
changes in gene expression seem to be caused by histone epigenetic 
modifications, methylation of gene promoters, and at least 
hypermethylation of microRNA miR-152 [24-28].

Clinical signs

Malignant transformation of cells in a benign tumour may be 
detected by pathologic examination of tissues. Often the clinical 
signs and symptoms are suggestive of a malignant tumor. The 
physician, during the medical history examination, can find that 
there have been changes in size or patient sensation and, upon 
direct examination, that there has been a change in the lesion itself.

Risk evaluations are possible and well-known for specific 
benign tumour forms that are known to change into malignant 
tumours. One of the better-known examples of this phenomenon is 
the progression of a nevus to melanoma.

Conclusion
Tumour formation requires numerous genetic changes within 

cells for malignant growth. Understanding the biology behind 
cancer requires identifying these genetic alterations. Chromosome 
abnormalities are crucial in malignant transformation, and 
chromosomal basis of cancer is based on these abnormalities. In 
mammals, RNA molecules control protein-coding gene transcription 
through genomic tools. Heavy metals like Cadmium, arsenic, and 
nickel can cause cancer when present above a specific threshold.
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