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Introduction
As the first line of defense, the innate immune system protects the body from the invasion 

of pathogenic microorganisms. The host recognizes pathogen-associated molecular patterns 
(PAMPs) and damage-associated molecular patterns (DAMPs) in cells through pattern 
recognition receptors (PRRs), and then starts a series of innate immune signal pathways 
to induce the production of type I interferon, pro-inflammatory chemokines and cytokines. 
Current research shows that PRRs include NOD-like receptor (NLR), Toll-like receptor (TLR), 
retinoic acid inducible gene I (RIG-I)-like receptor (RLR) and C-type lectin receptor (CLR) [1]. 
Immune stimulation products such as protein, RNA and DNA released by damaged tissues 
or necrotic cells can activate the innate immune signal pathway [2]. In recent years, the 
cyclized GMP-AMP synthetase (cGAS)-interferon stimulating gene (STING) signal pathway 
is a newly discovered and hotly studied innate immune signal pathway. The cGAS-STING 
signaling pathway plays an important role in many pathophysiological processes such as 
autoimmune diseases, metabolic diseases, tumors and inflammatory diseases [3-5]. About 
2 billion years ago, mitochondria were first thought to exist in eukaryotic cells in the form of 
symbiosis within bacteria [6,7]. Mitochondria not only provide energy for cells, but also play 
a vital role in regulating cell apoptosis, participating in heme and cholesterol biosynthesis, 
maintaining calcium homeostasis and producing intracellular reactive oxygen species (ROS). 
In the past few years, mitochondria have been widely studied in the field of immunology. One 
of the important reasons is that mitochondria play a direct role in the activation of immune 
signal pathways.  Various mitochondrial matrix contents released from mitochondria, can 
directly trigger the innate immune response [8]. Among these mitochondrial matrix contents, 
mtDNA has been widely confirmed as a danger signal, sending an alarm signal to the body and 
activating the innate immune response program in the target cells. In this review, we focus 
on the relationship between mtDNA and cGAS-STING innate immune signaling pathway. It 
is expected to provide new reference materials for the prevention and treatment of related 
inflammatory diseases by targeting mtDNA. 

Abstract
In addition to their role in cellular metabolism, mitochondria regulate a range of biological processes 
such as cell death and inflammation. Mitochondrial DNA (mitochondrial DNA, mtDNA) is the genome 
of the mitochondria themselves, and when leaked from stressed mitochondria into the cytosol, is able 
to activate the cyclized GMP-AMP synthase (cGAS)-stimulator of interferon genes STING innate immune 
signaling pathway, leading to the production of type I interferons and inflammatory cytokines. These 
products are capable of not only resisting invasion by pathogenic microorganisms but also leading to the 
development of inflammatory diseases. In this review, we review the role of mtDNA in the activation of 
the cGAS-STING innate immune signaling pathway.
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mtDNA
Mammalian mtDNA is a circular DNA of about 16.5kbp, 

composed of guanine-rich heavy (H) and light (L) chains mtDNA 
encodes 37 genes, including 13 genes encoding polypeptides 
required for electronic transport chain (ETC) [9], 22 tRNAs and 2 
rRNAs [10]. In cells with higher energy requirements, such as human 
skeletal muscle and cardiac muscle cells, the abundance of mtDNA 
is also higher [11]. Research shows that under the stimulation 
of various PAMPs such as lipopolysaccharide (LPS), mouse 
macrophages begin to replicate mtDNA and further produce pro-
inflammatory cytokines to trigger inflammation [12]. mtDNA is not 
naked, but consists of mitochondrial transcription factor A (TFAM), 
mitochondrial single-stranded DNA binding protein (mtSSB) and 
DNA polymerase γ. Such auxiliary proteins are packaged into 
“nuclear like” structure [13]. TFAM also acts as a “protective layer” 
and agglomerates mtDNA to protect it from oxidative damage of 
mitochondrial reactive oxygen species (mtROS), thus avoiding 
being recognized by the innate immune system and activating 
inflammatory reaction [14]. Compared with nDNA, the DNA repair 
mechanism of mtDNA is not comprehensive [13]. Mitochondria lack 
nucleotide-excision repair and other nuclear repair mechanisms 
[15,16]. Therefore, mutated or damaged mtDNA can be detected by 
the innate immune sensor in the cell and activate the inflammatory 
reaction. From the perspective of energy and metabolism, there are 
multiple copies of wild-type mtDNA in the same cell at the same 
time to tolerate mtDNA mutations [15,16]. Only when the mtDNA 
mutations are as high as 80% can clinical pathological changes 
occur. Excessive mtDNA exists in most tissues, including liver. 
Therefore, the small or moderate loss of mitochondrial DNA copy 
has no harmful effect on mitochondrial function. Research shows 
that the copy number of mtDNA must be lower than 20-40% of the 
basic level to induce serious mitochondrial dysfunction and adverse 
events [17]. In this case, the few mtDNA copies remaining in each 
mitochondrial cannot provide enough MRC polypeptides, resulting 
in oxidative phosphorylation damage. Compared with nDNA, 
mtDNA is hypomethylated, and changes in mtDNA methylation 
are related to cancer, obesity, diabetes and cardiovascular and 
neurodegenerative diseases [18].

At present, the relationship between mtDNA methylation and 
demethylation and activation of the innate immune system is still 
poorly understood, and more research is needed for clarification. 
In addition to mtDNA, intermediate nucleic acids such as double-
stranded RNA and TFAM protein produced during mtDNA 
transcription can also activate the immune response [19-21].

mtDNA and cGAS-STING signaling pathway
Cyclic GMP-AMP synthase (cGAS) is a cytoplasmic nucleotide 

synthase capable of recognizing DNA and catalyzing the synthesis 
of cyclic GMP-AMP (cGAMP) from ATP and GTP. cGAMP acts as 
a second messenger capable of binding STING and ultimately 
mediating through phosphorylation of TANK-binding kinase 1 
(TBK1) and the transcription factor IFN regulatory factor 3 (IRF3) 
IFN-stimulated gene (ISG) and type I IFN transcription [22-24]. Not 
only that, STING can also induce the expression of inflammatory 
factors such as TNF and IL-1β by phosphorylating IκB and allowing 

NF-κB to enter the nucleus [25]. In recent years, an increasing 
number of studies have demonstrated that mtDNA released into 
the cytoplasm can be recognized by cGAS and thus activate the 
STING pathway [26,27]. It was shown that during apoptosis, the 
Bcl-2 family of pro-apoptotic proteins Bax and Bak oligomerize 
at the outer mitochondrial membrane, inducing mitochondrial 
outer membrane permeabilization (MOMP), which in turn leads 
to the release of mtDNA, which can be recognized by the cGAS-
STING pathway and subsequently triggers type I IFN production 
[28]. It was demonstrated that in embryonic fibroblasts (MEF) in a 
transgenic mouse model, TFAM deficiency promotes mitochondrial 
stress and mtDNA mispackaging, leading to its ejection into the 
cytoplasm, where it binds and activates cGAS, triggers the STING 
signaling pathway, and ultimately mediates ISG and type I IFN 
expression [26]. Notably, mtDNA-mediated type I IFN can promote 
antiviral immune responses following DNA virus infection in 
addition to inducing sterile inflammation [26,29].

Concluding Remarks
Although there is a relatively large body of research on 

mtDNA-induced activation of the cGAS-STING signaling pathway 
in the development of pathogenic microbial infections and 
inflammatory diseases, there are many questions that need to be 
explored in greater depth. For example, how mtDNA is released 
from the mitochondria?. Although it has been shown that mtDNA 
can be released from the mitochondrial outer membrane into 
the cytoplasm via BAX and BAK, mitochondrial outer membrane 
permeabilization (MOMP), mitochondrial permeability transition 
pore (mPTP), or mitochondrial VDAC-mediated pore channels, 
these mechanisms are still controversial and more experimental 
data are needed to investigate this issue in depth. In addition to 
the cGAS-STING signaling pathway, there are also intracellular 
innate immune signaling pathways such as TLR9 and NLRP3. 
Which mtDNA recognition pathway is activated by damaged 
mitochondria under different stressors remains to be further 
explored, and whether there is crosstalk between the mtDNA-cGAS-
STING pathway and other innate immune pathways is still poorly 
understood. The answers to these questions will help guide the 
development of targeted drugs.
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